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Abstract of Thesis 

A Steady-State Visual Evoked Potential Brain-Computer Interface System 
Evaluation as an In-Vehicle Warning Device 

This thesis is part of current research at Center for Intelligence Systems Research 

(CISR) at The George Washington University for developing new in-vehicle warning 

systems via Brain-Computer Interfaces (BCIs). The purpose of conducting this research is 

to contribute to the current gap between BCI and in-vehicle safety studies. It is based on the 

premise that accurate and timely monitoring of human (driver) brain’s signal to external 

stimuli could significantly aide in detection of driver’s intentions and development of 

effective warning systems. The thesis starts with introducing the concept of BCI and its 

development history while it provides a literature review on the nature of brain signals. The 

current advancement and increasing demand for commercial and non-medical BCI 

products are described. In addition, the recent research attempts in transportation safety to 

study drivers’ behavior or responses through brain signals are reviewed. The safety studies, 

which are focused on employing a reliable and practical BCI system as an in-vehicle 

assistive device, are also introduced. A major focus of this thesis research has been on the 

evaluation and development of the signal processing algorithms which can effectively filter 

and process brain signals when the human subject is subjected to Visual LED (Light 

Emitting Diodes) stimuli at different frequencies. The stimulated brain generates a voltage 

potential, referred to as Steady-State Visual Evoked Potential (SSVEP). Therefore, a newly 

modified analysis algorithm for detecting the brain visual signals is proposed. These 

algorithms are designed to reach a satisfactory accuracy rate without preliminary trainings, 
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hence focusing on eliminating the need for lengthy training of human subjects. Another 

important concern is the ability of the algorithms to find correlation of brain signals with 

external visual stimuli in real-time. The developed analysis models are based on algorithms 

which are capable of generating results for real-time processing of BCI devices. All of 

these methods are evaluated through two sets of recorded brain signals which were 

recorded by g.TEC CO. as an external source and recorded brain signals during our car 

driving simulator experiments. The final discussion is about how the presence of an SSVEP 

based warning system could affect drivers’ performances which is defined by their reaction 

distance and Time to Collision (TTC). Three different scenarios with and without warning 

LEDs were planned to measure the subjects’ normal driving behavior and their 

performance while they use a warning system during their driving task. Finally, warning 

scenarios are divided into short and long warning periods without and with informing the 

subjects, respectively. The long warning period scenario attempts to determine the level of 

drivers’ distraction or vigilance during driving. The good outcome of warning scenarios 

can bridge between vehicle safety studies and online BCI system design research. The 

preliminary results show some promise of the developed methods for in-vehicle safety 

systems. However, for any decisive conclusion that considers using a BCI system as a 

helpful in-vehicle assistive device requires far deeper scrutinizing. 
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Chapter 1: Introduction 

1.1 Background 

Central Nervous System (CNS) functioning system was not recognized clearly until 

200 years ago. Before that time, the CNS was considered as an interface and intermediation 

factor between the human soul and physiological body. Developments in the medical and 

physiological sciences in the 19th century brought more knowledge about human body and 

specifically spread out the sensorimotor hypothesis about the CNS. During the past 150 

years, the knowledge about CNS and miscellaneous active components of the peripheral 

nervous system has expanded. In particular, the principles of converting the brains sensory 

signals to the motor outputs. An intricate complex of neuron’s excitations and spinal cord 

motorneurons reflexes lead to the physical limb function, which is mastered and maintained 

in the human brain (Wolpaw J. R., 2007). Disruption or deficits in any part of this sequence 

of functions will lead to the motor disorders. Efforts for restoring the lost motor functions 

especially by the neuroscientists flourished the idea of connecting the paralyzed people 

brains sensory neurons as an input commands to the assistive devices. This idea gave birth 

to the biomedical and bioengineering interdisciplinary area which is called Brain-Computer 

Interfacing (BCI).  

BCI is a pathway between the human brain and any type of targeted device. BCI 

systems, referred also as Brain-Machine Interfaces (BMI), attempt to interpret the brain 

signals for communicating with surrounding environment (Alonso N., 2012). This type of 

research has expanded from just three active research groups since 20 years ago to the six 

active groups since 10 years ago (Wolpaw J. R., 2007). Nowadays, more than 100 BCI 
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research groups all around the world are improving different aspects of this research. 

Advances in technology, engineering and medical sciences are broadening the BCI systems 

applications to non-medical fields. Currently, different applications in control system 

design, robotic systems, multimedia, entertainment and motor substitutions (prosthesis) are 

attracting research groups and companies (Millán J. D. R., 2010). 

BCI systems are the combination of a recording device, which collect the brain signals 

either invasively or non-invasively, and a processing algorithm which convert the recorded 

signals to the meaningful device commands. Invasive data collection methods need a high 

level of skill on placing the electrodes in the brain and accompanied by high level of risk. 

Most of current BCI researches are based on non-invasive methods, which collect the data 

through different medical devices. Typically, Electroencephalography (EEG), 

Magnetoencephalography (MEG), Electrocorticography (ECoG), Functional Magnetic 

Resonance Imaging (fMRI) and Near Infrared Spectroscopy (NIRS) have been used for 

the BCI studies (Alonso N., 2012). Non-medical studies have usually benefited from 

EEG device because of its safety and easy data collection. This device is configured by 

16 to 256 electrode channels made of silver chloride (AgCl) and records the 

electromagnetic fields, perpendicular to the scalp, and potential changes in the cortex.  

The EEG device is capable of measuring limited known brain signals which are used 

for different BCI systems according to their origin in the brain. Significant signals collected 

from primary and somatosensory motor cortices over frontal and parieto-occipital lobes are 

delta waves (below 4 Hz), theta waves (4-8 Hz), alpha rhythms (8-12 Hz) and beta rhythms 

(12-30 Hz). Another important type of brain signals, which are recorded from the Visual 
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cortex, are called transient Visual Evoked Potentials (tVEPs below 4 Hz) and Steady-State 

Visual Evoked Potentials (SSVEPs 4-75 Hz) [ (Alonso N., 2012), (Elitzur A.C., 2010), 

(Dobriyal M., 2011)]. Sensory motor cortex signals are mostly employed for developing 

the control BCI systems to process user brain’s cognitive signals. The VEPs are typically 

used for the goal selection BCI systems in which the process would be triggered by user 

intention and assistive devices will operate different commands. These two types of brain 

signals form majority of BCI systems and wide range of applications (Wolpaw J. R., 2007). 

In the field of motor recovery and motor substitution, different neuroprosthesis devices are 

partially restoring some of the lost limb functions.  

The assistive wheelchairs controlled by brain signals and more recently assistant robots 

are advances in BCI technologies. Other applications such as entertainment and multimedia 

for real-time synchronized systems are also burgeoning in BCI technologies for 

commercial purposes (Millán J. D. R., 2010). Many research institutes within the US, e.g. 

USA Army (DARPA) and NASA are attempting to develop real-time systems to supersede 

the human presence in hazardous or challenging conditions (Bakardjiana H., 2009). 

Developments of BCI systems brought the idea of employing EEG device in other safety 

fields, such as developing the in-vehicle assistive technologies. The driver behavior and in-

vehicle assistive studies have been conducted in the real or simulated environments such as 

car-simulators. First paces were started with exploring the drowsy drivers’ brain signals 

and vigilance detection [ (Matousek M., 1983), (Parikh P., 2004), (Chang C. W., 2010)]. 

Human safety studies are extended to the modeling of brain signals during the driving task 

when driver has different psychological statuses [ (Lin C. T., 2005), (Lin C. T., 2005), 
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(Liang S. F., 2005)]. This type of research attempts to estimate the driver’s reaction and 

intention detection in an upcoming emergency situation (Haufe S., 2011). These types of 

driver behavior research could mainly contribute to development of in-vehicle assistive 

technologies. 

The growth and expansion of the BCI systems applications revealed the necessity for 

designing the accurate and reliable real-time BCI systems. Traditional BCI processing 

algorithms are usually based on five steps such as: signal acquisition and artifact rejections, 

preprocessing step, feature extraction, classification and finally decision detection (Wolpaw 

J. R., 2007). This prolonged method is usually time consuming and cannot satisfy the quick 

response detection needed for real-time systems. Typically, BCI system configuration 

requires long-term training sessions for adapting the system analysis algorithm parameters 

and user brain signals. Lack of system generality and the subject/subject or even 

subject/trial performances’ variations cause the reduction in the BCI systems accuracy and 

processing speed. These limitations are caused by two fundamental sources. First, the 

unknown nature of the brain signals sources and the magnetic field’s strength generated by 

cortical neurons mass for EEG recordings. Second, the brain signals processing algorithms 

deficiencies. To enhance the efficiency of the BCI systems, research groups are proposing 

new machine learning and adaptive filtering algorithms to recompense the analyses 

inefficiencies [ (Friman O., 2007), (Vasquez P. M., 2008)]. Some of the researchers are 

suggesting BCI systems based on analyzing the brain signals which are more stable and 

detectable (Wolpaw J. R., 2007).  
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The SSVEP brain signals are recorded from visual cortex over the occipital region, on 

the back of human scalp. SSVEPs are one of the event related potentials (ERPs) which are 

evoked by an exogenous stimulus flickering constantly with the frequency of higher than 4 

Hz. These Potentials imitate the patterns of their exogenous stimulus signals and remain 

detectable till person exposed to the stimulus. The analyses algorithms for filtering these 

signals are less time consuming and provide more accurate and reliable outputs (Elitzur 

A.C., 2010). Many studies have been conducted to propose accurate and reliable online 

SSVEP BCI systems and to implement them in a realistic problem [ (Friman O., 2007), 

(Vasquez P. M., 2008), (Guger C., 2012), (Martinez P., 2007)]. 

1.2 Thesis Objectives 

The objectives of this thesis are classified in two categories: 

• The first objective is to evaluate and modify different analyses algorithms to 

detect the SSVEP brain signal responses. By considering the challenge of 

reliability and accuracy, these algorithms attempt to generate outputs every 

few hundreds of milliseconds as efficient as possible. To insure the analyses 

methods proficiency for an online BCI system, for each algorithm, Information 

Transfer Rate (ITR) is calculated. This criterion determines the amount of 

information (data bits) which is provided in epochs of data. 

• The second objective is to explore the use of an SSVEP based BCI as an in-

vehicle driver warning or assistance device. This is evaluated in a driving 

simulator. To achieve this, different driving scenarios are designed where 
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subjects face the emergency situations. Meanwhile, SSVEP signals are 

recorded to evaluate the SSVEP BCI analyses models reliability. The LED 

warning stimuli’s effect on driver’s performance in an upcoming emergency 

situation is evaluated with both a short and long warning periods ahead. 

1.3 Summary of Approaches 

This thesis attempts to evaluate and modify different analysis algorithms for SSVEP 

fast response detection (for real-time purposes) and to explore an SSVEP based BCI system 

for in-vehicle driver assistant system, evaluated in a car driving-simulator. Adaptive filters 

and multivariate data analysis algorithms, proposed by Martinez et al. and G. Bin et al., are 

suitable for real-time BCI systems and reach an acceptable accuracy with no training 

sessions [(Martinez P., 2007), (Bin G., 2009)]. In this thesis, the recursive adaptive filtering 

algorithms and multivariate data analysis methods’ effectiveness for detecting the drivers’ 

brain signals correlation with LED stimuli in a car-simulator is evaluated. These methods 

are listed below: 

• Canonical Correlation Analysis (a multivariate data analysis method). 

• Co-Inertia Analysis (a multivariate data analysis method). 

• Adaptive Kalman Filter (an adaptive filtering method). 

• Adaptive Gauss-Newton Filter (an adaptive filtering method). 

• The Constrained Discrete Fourier Transform (DFT) Block Adaptive Filter (an 

adaptive filtering method). 
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Two sets of data employed to evaluate the accuracy of these modified algorithms. The 

first data-set was provided by g.TEC CO. as an external source (collected from 4 subjects’ 

visual cortex). The second data-set is recorded from 30 subjects during a single SSVEP test 

session at CISR laboratory of The George Washington University. The subjects have not 

performed a SSVEP based BCI system before participating in our test sessions. The data 

was collected by 8 EEG channels from visual cortex. The SSVEP test session is described 

in chapter 4.  

In particular, this research considers a SSVEP based BCI system as a collision 

avoidance warning system and evaluates the drivers’ behaviors by measuring their Time to 

Collisions (TTC) and braking distances (BD). The subjects drove 3 different scenarios in 

the driving car-simulator. These scenarios are as follows: 

• Normal driving scenario with no warning. 

• Short warning scenario, LED warning started 3-seconds before emergency 

situation. 

• Long warning scenario, LED warning started 6-seconds before emergency 

situation. 

To measure the LED warning effect on drivers’ vigilance or distraction, drivers’ 

performances in scenarios with LED warning activations compared to their normal driving. 

Finally, the subjects’ intention detection before an emergency situation is evaluated. 

These can be achieved by detecting subjects’ brain signals correlations with LED stimulus 

signal during the LED warning system activation. The purpose of this correlation detection 

is to determine whether SSVEP brain signals activities can be detected before subjects’ 
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response to the emergency situations. This can be helpful for the future driving assistive 

systems which could consider a SSVEP based BCI as an in-vehicle assistive technology. 

1.4 Outline of Thesis 

This thesis begins with introduction as its 1st chapter and delivers a brief description on 

the BCI studies background. The topic’s significance for providing more reliable and 

accurate BCI systems is clarified. The importance of applying the BCI system to driver 

assistance research is also highlighted. The 2nd chapter presents the literature review on the 

BCI studies and attempts to describe the different BCI system categories. In this chapter, a 

concise description of the EEG device and the desired brain signals in BCI research will be 

explained. This chapter finishes by reviewing the traditional signal processing and pattern 

recognition methods in the earlier BCI research. The 3rd chapter describes the proposed 

analyses algorithms and formulates all of the filtering and numerical analyses steps. The 4th 

chapter includes the experimental protocol, instrumentations and test setup configurations. 

The 5th chapter consists of two parts. The first part presents the SSVEP analyses algorithm 

results. In second part, drivers’ performance is evaluated by calculating the reaction times 

and reaction distances. Meanwhile, the brain signals correlation with LED stimulus signal 

is evaluated in various warning scenarios. This chapter ends with the general conclusion 

and discussions about the effectiveness of the suggested analyses procedures and the 

feasibility of employing an SSVEP BCI system as an in-vehicle assistive device. The 6th 

chapter summarizes the contributions of this research and gives suggestions for the future 

studies. 
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1.5 Contributions 

This thesis evaluates four different signal processing methods to find correlations 

between human brain signals and external LED stimuli. This thesis proposes the adaptive 

filtering algorithms and multivariate data analyses methods for detecting the SSVEP brain 

signals responses. Among the five presented methods; there are methods based on adaptive 

filtering and multivariate data analysis which have not been used for this purpose 

previously and one CCA (Canonical Correlation Analysis) is among the most successful 

multivariate data analysis techniques that have been used in literature for SSVEP response 

detection. The advantages of proposed modified algorithms are the filtering of brain signals 

without training sessions and reaching satisfactory level of accuracy. Therefore, the 

possibility of designing the BCI systems with reliable output commands in an online 

session is measured. The driver’s performances, by calculating time to collisions and 

reaction distances, during the designated scenarios are assessed. Finally, the effect of the 

SSVEP stimulation-box (i.e. the visual warning device) presence, on the driver vigilance 

and performance is also assessed. The driver’s performances evaluation with an SSVEP 

stimulus attempts to evaluate the SSVEP BCI systems for future safety systems. The 

findings of this research contribute to the brain machine interface with the advanced driver 

assistance systems of the future, in which enhanced driver monitoring and augmented 

warning using brain signals correlations may become possible. 
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Chapter 2: Literature review 

This chapter reviews the literature relevant to the focus of this thesis. It starts by 

reviewing the general Brain-Computer Interface (BCI) systems because they provide 

foundational information about brain monitoring. Then, after a brief review of 

physiological origin of electrophysiological measurements in section 2.2, various brain 

signal measurements using EEG in section 2.3 are reviewed. 

The Brain-Computer Interface applications are reviewed, in section 2.4, leading to the 

driver behavior studies using brain monitoring in section 2.5. Finally, in section 2.6, the 

various elements of brain signal processing are discussed. 

2.1 Brain-Computer Interfaces 

During the past two decades there has been a great effort by different psychology, 

neurology and engineering research groups to improve the life quality of paralyzed, locked-

in or spinal injured patients. The idea of creating direct communication and interaction 

between brain signals and any assistive device resulted in systems which are called Brain-

Computer Interfaces. Furthermore, different researches have revealed the important non-

medical aspects of these systems. The BCI research efforts on improving the efficiency and 

reliability still carry on. Any further step toward enhancement of the future BCI research 

should focus on system’s real-time performance practicability and its user friendliness. 

More reliably developed BCI systems translate the brain signals to desirable system control 

outputs, more precisely (Millán J. D. R., 2010).  

The brain signals employed for BCI systems are measured either by invasive or non-

invasive methods, regardless of control device applications. The invasive systems implant 
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the macro/microelectrodes on brain cortex surface or inside the brain. The non-invasive 

measurement devices record the brain signals from scalp surface. Non-invasive systems 

measure the electromagnetic fields which are perpendicular with respect to brain skull. 

These electromagnetic fields are generated from the synchronized depolarization of large 

ensemble of fired neurons in the brain cells (Birbaumer, 2006). Among non-invasive 

devices which collect the electrophysiological/magnetical measurements from brain skull, 

Electroencephalography (EEG) is more rampant. Researchers prefer this device because of 

its safety and convenience in usage. However, spatio-temporal resolution of the EEG is 

limited to hundred milliseconds while brain electrophysiological activities have a high 

spatiotemporal resolution typically around 20 kHz (Bießmann, 2012).  

The EEG comes with different sets of electrodes, either dry or wet. These electrodes are 

conventionally made of tin, for cheaper devices with acceptable recording resolution, or 

copper-Au and AgCl electrodes for devices with better resolutions (Millán J. D. R., 2010). 

The electrodes are placed over head with an electrode cap. Typical electrodes’ positioning 

system which is called 10-20 system is demonstrated in Figure 1. This positioning system 

is later extended with more channels to 256 electrode locations. 
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Figure 1. Electrodes’ 10-20 positioning system 
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2.2 Physiological Origin of Electrophysiological Measurements 

Electrophysiological measurements are obtained from potential changes in the brain 

cells due to neurons’ dispatches. These electrical fields usually change due to the 

neurotransmitter chemical ions, firing into the synapses and then reach to the post-synapses 

chemico-sensitive channels. This transmission opens the post synapses channels and 

depolarizes the dendritic cell part with respect to its extracellular part. Figure 2 briefly 

illustrates the schematic procedure of this process. During the rest, intracellular medium is 

nearly at 70mV with respect to extracellular medium. The depolarized dendritic part of cell 

with negatively charged soma pole generates an electromagnetic field. This 

electromagnetic field might be big enough to be measured by EEG. However, only 

perpendicular fields will be detectable by EEG (Nunez P. L., 2006). 

 

Figure 2. The schematic neural activities taken from (Bießmann, 2012) 

2.3 EEG Detectable Brain Signals and Potentials 

The human brain masters and controls all types of human physiological activities. All 

of our muscular movements or imaginary brain activities are resulted from electromagnetic 
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changes in the human brain. Generally, brain control activities are accomplished in cortex 

and could be measured by EEG. Figure 3 represents different parts of the human brain and 

highlights typical cortices used for BCI systems. The Human brain cerebrum is subdivided 

into 4 different regions including: frontal, parietal, occipital, and temporal lobes. The 

central sulcus divides the frontal and parietal lobes from each other. The central sulcus also 

separates the pre-central gyrus (indicated in red) and post-central gyrus (indicated in blue). 

The most important signals, which are used for BCI systems, are collected from motor 

areas, somatosensory cortex, posterior parietal cortex, and visual cortex. 

 

Figure 3. Human brain cerebrum (Elitzur A.C., 2010) 
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The brain signals which are suitably observable from these cortices by EEG for BCI 

system design are as follows. These brain signals and potentials usually configure the BCI 

systems control command’s types. 

• Event-Related Potentials (ERPs) 

• Visual Evoked Potentials (VEPs) 

• Sensory Motor Rhythms (SMRs) 

• P300 Evoked Potential 

Each is described below. The descriptions are taken from references [ (Millán J. D. R., 

2010), (Elitzur A.C., 2010)]. 

2.3.1 Event-Related Potentials (ERPs) 

The Event-Related potentials are the electrical brain responses to physical stimuli or 

behavioral activities. These signals are characterized by their voltage amplitude and time of 

the appearance with respect to stimulus. The earlier components of these signals are 

originated in primary motor cortex and have latency of less than 100 milliseconds. The 

components with the latency of 100 to 500 milliseconds are related to more complex 

cortical activities. The ERPs, detectable up to a few seconds after stimulus, are called Slow 

Cortical Potentials (SCPs). 

2.3.2 Visual-Evoked Potentials (VEPs) 

VEPs are generated in response to an exogenous visual stimulus which flickers at 

specific frequency. These potentials prominently recorded from occipital region and their 
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characteristics depend on the stimulus signal patterns. The Visual stimuli with constant 

frequencies over 4 Hz provokes oscillatory brain responses from visual cortex with the 

same frequency components. These types of responses are called Steady-State Visual 

Evoked Potentials (SSVEPs). The brain responses to the stimuli with frequencies of less 

than 4 Hz are called transient VEPs. The VEP responses typically initiate 75 ms after 

exposure to stimulus in primary visual cortex with negative electromagnetic components. 

The response is followed by the positive components approximately 100 ms after stimulus 

initiation. An example of SSVEP stimulation-box is demonstrated in Figure 4. 

 

Figure 4. An SSVEP LED stimulation-box (Guger C., 2012) 
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2.3.3 Sensory Motor Rhythms (SMRs) 

Sensory-Motor Rhythms are usually recorded from primary and somatosensory motor 

cortices. These rhythms are observable at 8-12 Hz or 18-26 Hz frequency ranges and called 

mu and beta rhythms, respectively. The physiological activities decrease the mu and beta 

bands amplitudes. This process is called Desynchronization. Desynchronization is called 

Event-Related Desynchronization (ERD) with respect to other brain’s oscillations and 

activities. After completing any voluntary movement, the power (amplitude) of brain 

rhythms increases. This phenomenon is called Event-Related Synchronization (ERS). ERS 

is dominant over contralateral sensorimotor area and the corresponding brain signals 

maximum amplitudes appear about 600 ms after movement’s offset. These brain signals’ 

fluctuations are typically observable at the electrodes C3, C4 and Cz (Alonso N., 2012). 

Furthermore, some research results indicate that ERD and ERS do not require an actual 

movement for provocation. This phenomenon also occurs with motor imagery movements. 

Moreover, some studies’ results has shown that people with or without motor disabilities 

are able to control mu and/or beta rhythm’s amplitudes. Generally, performing and 

imagining the motor action tasks are observable by EEG over motor and sensorimotor 

cortices (Blankertz B., 2010).  

2.3.4 P300 Potentials 

An infrequent auditory, visual, or sensory stimulus, when intersperses within a frequent 

stimulus pattern, evokes a positive amplitude nearly 300 ms at electrode position Pz after 

subjects’ exposure to the stimulus (see the location of Pz on Figure 1). These brain 

potentials are detectable from parietal cortex. This brain signal peak is called P300 
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potential. In the P300-based BCI system, the user is exposed to the array of auditory, 

visual, or somatosensory stimuli, which represent a particular pattern. The desired 

infrequent stimulus within this pattern elicits the P300 brain potentials and activates the 

BCI system.  

2.4 The Brain Computer Interfaces’ Applications 

The BCI systems will perform the designated task through appropriate and efficient 

processing methods. These processing methods and algorithms differ from each other 

based on BCI systems’ applications. In this section, BCI system categories which cover the 

BCIs applications will be reviewed. The earlier BCI applications were limited to the 

medical purposes. Recent advances in technology and neural engineering has revealed 

probable commercial applications of BCI systems. Therefore, demands for real-time 

operating BCI systems accumulate. The problem of enhancing the performance accuracy 

and system reliability is challenging. This problem originates from the signal processing 

and machine learning deficiencies. The BCI systems’ applications are classified in four 

major categories which are motor substitution, motor recovery, entertainment, 

communication and control (Millán J. D. R., 2010). 

2.4.1 Motor Substitutions 

Many people are suffering from losing partial or full motor functions of their limbs. 

Some severe motor action damages are not recoverable with surgery. Usually, the 

Functional Electrical Simulation (FES) partially restores the lost functions. The 

Neuroprosthesis are BCI systems which replaces the part of limb lost functions. Some of 
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these systems are based on non-invasive BCIs, e.g. commercial product NESS-H200 

(Bioness Inc., Valencia, USA). Pfurtscheller and his colleagues’ research plan have 

successfully led to a non-invasive BCI system for grasping restoration (Pfurtscheller G., 

2003). The notable research has been conducted by Millan’s research group in which motor 

imaginary of hand movements are used for grasping and writing purposes. In this research, 

a hand orthosis is used for synchronizing the hand movements. This system also applies the 

user desired forces to the fingers and brings less fatigue in the long term period (Tan D. S., 

2010). So far, other research groups also attempted to develop more advanced BCI 

prosthetic systems through invasive methods.  

The assistive mobile devices controlled by brain such as wheelchairs or any other type 

of telepresence robots are considered as motor substitution BCI system. Some commercial 

products are available in market e.g. peoplebot (Mobile Robots Inc., Amherst, USA), 

iRobot (iRobot Corp., Bedford, USA), robotino (Festo AG, Dietikon, Switzerland) (Millán 

J. D. R., 2010). Finally, the primary challenges for these systems are autonomy level and 

collaboration between developed smart robots with human brain. The inferior challenges 

are the BCI systems reliability level and situations where these systems should be trusted to 

act. 

2.4.2 Entertainment 

Though, the earlier BCI systems were less seriously considered for entertainment 

nowadays more BCI devices are designed for these purposes: virtual video gaming, media 

and music systems, computer related technologies. Producing commercial products with 

non-medical applications are becoming more important as the BCI technology proliferates. 
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Enhancing the quality of such systems generally helps other BCI research fields to 

improve. It has been shown that controlling the games by BCI systems are possible and not 

dependent on gaming type, even with slightly trained users (Tangermann M. W., 2008). 

Some research groups developed virtual environments to train and improve the capability 

of the people who are paralyzed. These research results show better overall BCI 

performances for those paralyzed people [ (Tangermann M. W., 2008), (Nudo, 2006), 

(Millán J. D. R., 2010), (Elitzur A.C., 2010)]. 

2.4.3 Motor Recovery 

Motor recovery for impaired patients from strokes is critical. Their life quality will be 

improved by restoring back the lost functions. These days many research labs are seeking 

the new ways of rehabilitation for spontaneous motor functions recovery through 

neuroscience and especially with BCI systems [  (Nudo, 2006),  (Ward N. S., 2004)]. 

Nevertheless, recovering the lost functions and brain neural activities with the help of BCI 

systems is controversial. The research review by Lotze discusses examples in which the 

brain stroke patients have been recovered faster than usual by imagining the mental tasks, 

when they used BCI systems (Lotze M., 2006). 

2.4.4 Communications and Control 

The goal of communicating with the surrounding environment for severely disabled 

people is to improve their life quality and encourages them to pursue their medications. 

However, neuroscientific labs and research groups have not restricted their research goals 

to the medical purposes. The BCI studies on control and communication encompass a vast 
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area and connect the neuroscience, neural engineering and control system design 

engineering disciplines. The current BCI systems for producing commercial products are 

also considered for healthy individuals. Different companies, governments and national 

research institutes are conducting BCI studies. The efforts are on developing the BCI 

systems for variety of control devices to redeem or reduce the human physical interactions. 

Galan et al. and Mason et al. published their results on designing a wheelchair 

asynchronized with the sensory motor signals [(Galan F., 2008), (Mason S. G., 2000)]. 

Brouwer et al. developed a P300-based BCI system functioning with vibro-tactile feedback 

to select the target on screen (Brouwer A. M., 2010). Donchin et al. designed an online BCI 

system which detects the user intention from evoked brain potentials with randomly 

flickering frequencies (Donchin E., 2000). The research by Wolpaw et al. has introduced a 

BCI system which controls the cursor movement in a 2D screen (Wolpaw J. R., 2004). 

Similar research is proposed by Bell et al. which attempts to navigate a cursor without 

training the subjects (Bell C. J., 2008). Blankertz et al. conducted research to control the 

humanoid robot with sensory and somatosensory brain signals (Blankertz B., 2007). They 

designed the system based on detecting P300 brain potentials and sent feedback to user 

with cameras mounted on the robot. The research on controlling different devices has 

continuously improved the BCI systems’ accuracy and reliability. All around the world, 

research groups have tried to develop the faster, more efficient and reliable systems by 

implementing different brain signals or specific brain temporal pattern. For example, 

Muller et al. introduced the SSVEP-based BCI system to control a prosthetic arm with 

different degrees of freedom (Müller G. R., 2008). 
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The necessity of reducing the training sessions and introducing online BCI systems has 

dramatically increased during the past decade. Bin et al. proposed the canonical correlation 

analysis to interpret user intention with SSVEP brain signals without any training session 

(Bin G., 2009). Other research studies evaluated different analysis methods and contributed 

in developing the machine learning and signal processing algorithms for online BCI 

systems’ performances [ (Friman O., 2007), (Vasquez P. M., 2008), (Martinez P., 2007), 

(Bin G., 2009)]. Vasquez et al. proposed an SSVEP based BCI system to control a robot 

(Vasquez P. M., 2008). Their system was configured after short training sessions and 

reached to an acceptable accuracy level. Bakardjiana et al. implemented an analysis method 

based on banks of filters and integrated energy classifiers of EEG channels to control a 

virtual car in the planned route (Bakardjiana H., 2009). Their BCI system performed 

reasonably in an online session with eight flickering stimuli.  

This conclusive effort might be the outcome of unknown nature of the human brain 

neurons’ activities and capability of non-invasive devices for recording brain signals. 

Recently, more research has been conducted on the real-time processing algorithms with 

suitable system accuracy and information transfer rate. Friman et al. proposed different 

SSVEP analysis methods which detect SSVEP responses and estimate the error signals 

(Friman O., 2007). Other research by Allison et al. suggested combining the imaginary and 

visual evoked brain signal analyses for improving system operability in a hybrid BCI 

system (Allison B. Z., 2010). The hybrid BCI system is an effort to improve the accuracy 

and real-time operability by feeding the system with additional input data collected with 

other devices or from different brain lobes. 
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2.5 The Driver Behavior Studies and Brain Signal Processing Research  

The importance of in-vehicle assistive systems and driving behavior studies originate 

from fatality rate and cost of national annual crashes in the US. The National Highway 

Traffic Safety Administration (NHTSA) has reported 29757 fatalities and an overall of 

2,217,000 injured or wounded only during 2011 (DOT Safety Facts, 2011). Among these 

many accidents, nearly 17 percent occurred by distraction and 31 percent happened because 

of the drunk drivers [ (DOT Safety Facts, 2011), (DOT Driver Distraction Guidelines, 

2010)]. This issue attracted the government and many other research institutes and 

companies to conduct studies and develop systems and manuals for relieving the problem. 

Since then many driver behavior studies have been conducted because of their importance 

in saving lives. Moreover, improving the driving safety and traffic efficacy needs more 

knowledge about human behaviors in different situations or conditions. Correspondingly, 

the safety studies facilitate a new generation of intelligent transportation safety systems and 

driver assistive technologies. During the past decade, systems such as adaptive cruise 

control (ACC), lane keeping assistive system (LKAS), the vehicle navigation systems and 

collision avoidance system have been developed by the acquired knowledge from drivers’ 

behavior studies. In these studies, the drivers’ mental and physical conditions at different 

situations are observed while driving data are recorded. Various in-vehicle recording 

devices such as EEG, eye-tracking systems and MEG (magnetoencephalography) are 

employed to gain the drivers’ physical and psychological data. Other driving data such as 

braking and gas pedal pressures, steering wheel angle and torque, car positioning and its 

deviation from the lane center are also engaged in transportation safety research [ 
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(Miyajima C., 2007), (Rimini-Doering M., 2001), (Vural E., 2007), (Rau, 2005), (Mulder 

M., 2004), (Wu Y., 2009)].  

The advances in technology and outcomes of the earlier research have led to modeling 

of more sophisticated systems, which detect the emergency situations and estimate the 

drivers’ behaviors. In particular, using the EEG device in driver behavior and safety studies 

has dramatically increased with satisfactory achievements from BCI studies, 

simultaneously. Matousek et al. analyzed the data recorded with 256 Hz by EEG and 

filtered the time-windows of data samples by the wavelet transformation at different 

frequencies (Matousek M., 1983). Then, they estimated the linear regression lines for the 

signals. They suggested that the regression line slope is an indicator, which has a direct 

relation with drivers’ vigilance. Parikh et al. studied alpha waves in frequency range of 8-

13 Hz by filtering the recorded brain signals with wavelet transformation. They concluded 

that increase in drivers’ drowsiness level is accompanied by alpha waves’ amplitudes 

increases and could be detectable from the C3-O1 and Cz-Oz electrodes (Parikh P., 2004). 

Lal et al. conducted the driving simulator experiments on drowsy drivers. The participants 

were asked to drive 10-15 minutes active driving scenario consisting of curves and 

different traffic conditions which was followed by 2 hours monotonous driving task. Then, 

delta, theta, alpha and beta brain waves were band-passed and transformed to frequency-

domain by Fast Fourier transformation (FFT). These signals amplitudes were compared via 

Analysis of Variance (ANOVA). They concluded the increase in drowsiness level was 

followed by increase in brain waves amplitudes. Their results indicated an average increase 

of 22 to 26 percent in theta and delta waves amplitudes while this amount was limited to 9 
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percent for the alpha and beta rhythms (Lal S. K. L., 2002). Other research conducted by 

Schmidt et al. on drivers’ vigilance, consisted of infrequent targeted distractor sounds. The 

outcome of their research revealed the P300 potential sensitivity to drivers’ vigilance. 

According to this research decreases in drivers’ vigilance will result in the P300 amplitude 

drop (Schmidt E. A., 2007).  

The research studies on the driver’s brain signals have revealed their meaningfulness 

and significance for future drivers’ behavior estimating models and safety studies. The 

drivers’ behavior estimation modeling and drivers’ intention detection using brain signals 

could contribute to in-vehicle assistive BCI systems for driver safety. However, the type of 

research connecting the BCI technologies, driving assistant systems and behavior studies is 

almost remained intact. During the past decade, many researchers’ efforts on predicting the 

drivers’ intention via brain cognitive signals have been conducted. However, the reliability 

issues of the BCI systems and concurrent BCI studies challenges have been problematic in 

drivers’ assistive technologies. Lin and his colleagues in their research proposed an 

algorithm to predict the drivers’ drowsiness and alertness level. Subjects were asked to 

drive the car-simulator scenarios, two 45 minutes sessions, and keep the car at the road 

center line. The recorded brain signals band-passed and Independent Component Analysis 

(ICA) collected the dominant brain signal channels. Then, a 50-order linear regression 

model of signals’ estimated Power Spectral Density (PSD) was calculated. The results of 

this study present satisfactory fitness between the real brain signals power spectrums and 

the predicted brain signal power spectrums (Lin C. T., 2005). Chang et al. proposed 

invasive brain signal acquisition method to improve the observed brain signal quality and 
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system accuracy. They employed silicon dry electrodes based on micro-electro-mechanical 

systems (MEMS) to record brain signals from the stratum corneum (SC) which consists of 

skins’ dead cells. The Principle Component Analysis (PCA) collected the prominent EEG 

channels and reduced the artifacts. The multivariate regression model of brain signals’ PSD 

is estimated. The results show nearly 90 percent accuracy rate in estimation of brain signal 

amplitudes (Chang C. W., 2010). Haufe et al. conducted the car-simulator study to predict 

the drivers’ intention for braking in an emergency situation. They recorded the data from 

multiple systems and tried to develop the best estimation algorithm. The EEG brain signals 

were recorded from the parieto-occipital cortices and the best power spectrum estimation of 

these signals were calculated. Afterwards, according to the driving outputs data, dominant 

EEG channels representing the brain source signals were selected (Haufe S., 2011). 

Typically, the studies which have been conducted in the field of transportation safety 

employed the EEG recordings to estimate users’ drowsiness level and drivers’ vigilance. 

These studies predict best regressions’ models and analysis methods for brain signal power 

spectrums estimations. The gap between the real-time BCI technologies and driver safety 

studies still requires more in-depth research. The implementation of the online BCI systems 

as in-vehicle assistive technologies, and determining system’s efficiency and probable 

effects on drivers’ performances necessitate more algorithm development and correlation 

analysis of brain signals. This thesis attempts to determine the effects of SSVEP-based BCI 

system presence on the drivers’ distraction. Moreover, this research evaluates the accuracy 

and reliability of analysis methods, which are suitable for future online SSVEP BCI 

systems design. 
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2.6 Brain Signals Processing Algorithms 

In this section the processing algorithms which are typically used by BCI research 

groups will be explained, briefly. Algorithms are based on some processing steps to 

generate meaningful outcomes from noisy recorded brain signals via EEG. Different 

analysis methods have been employed which have been proposed by the earlier BCI studies 

(Elitzur A.C., 2010). 

The BCI systems are usually closed loop control systems which are initiated from some 

recorded brain signals and terminated in a control device. These systems’ processing 

algorithms usually take four steps including data acquisition, preprocessing, feature 

extraction, and feature classification methods. Following paragraphs describe the more 

commonly used methods in earlier BCI studies [ (Elitzur A.C., 2010), (Tan D. S., 2010)]. 

2.6.1 Data Acquisition 

The data acquisition devices which are typically used in BCI studies are as follows: 

Electroencephalography (EEG), Magnetoencephalography (MEG), Electrocorticography 

(ECoG), Functional Magnetic Resonance Imaging (fMRI) and Near Infrared 

Spectroscopy (NIRS). The work in this thesis uses EEG sensors, which are further 

described in other chapters. 

2.6.2 Preprocessing and Feature Extraction 

Preprocessing is referred to the step where artifacts and noises are detected and 

removed. The observed brain signals could be accompanied by some artifacts such as user 

physical activities or psychological loads, power line noises and measurement device 
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noises. Since the interesting brain signals for BCI systems are usually low-frequency 

signals, the simplest method to reduce the artifacts and noises is to use band-pass frequency 

filtering (Elitzur A.C., 2010). Other methods which have been used in BCI research to 

prepare and extract the brain signals’ features are succinctly described as follows. 

2.6.2.1 Linear transformations 

The linear transformations generally transfer a subset of input data channels (x) 

with linearly combining them via weight factors (W) to the components of 

transformation space (y). (Eq. 1) represents the linear transform. 

y Wx=  (Eq. 1) 

Where, in this equation, the transformed signals anticipated to be denoised, which 

increases Signal to Noise Ratio (SNR). Afterwards, the algorithms such as, temporal 

filters, Moving Average (MA) filter, or frequency power analysis algorithm are 

processed on components in transformed space. 

2.6.2.2 Common average reference (CAR) 

The Common Average Reference (CAR) method adjusts EEG electrode channels 

by subtracting their values from the overall average of all other selected subset of 

channels. This can be seen in (Eq. 2) 
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1
1 ( ... )i i Ny x x x
N

= − + +  (Eq. 2) 

Where, xi is selected input channel and N is the number of subset channels and y is 

the transformed signal channel. The CAR method is decent for removing artifacts 

which are common among all of electrode’s channels and cannot be effective for 

removing the artifacts which are localized within some EEG channels. 

2.6.2.3 The laplacian references 

This method adjusts the EEG channel amplitudes by subtracting them from the 

neighboring channels. Besides, depending on the selected neighboring channels this 

method is called large or small Laplacian References (LR). Small Laplacian reference 

method is based on subtracting signal channel’s amplitudes from four nearest EEG 

signal channels’ average amplitudes. The large Laplacian method is based on the 

subtracting from the four secondary closest EEG channels. Figure 5 demonstrates the 

schema of the laplacian reference derivations. 
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Figure 5. The small laplacian (left) and the large laplacian (right) derivations, figure is 
taken from (Elitzur A.C., 2010). 

2.6.2.4 Principle component analysis (PCA) 

This method separates brain source signals’ components from observed brain 

signals. This method will result in distinguishing between desired and noisy 

(undesirable) brain signals’ components. The PCA performs an orthogonal linear 

transformation and transforms the initial data to the new coordination system. This 

transformation arranges uncorrelated decomposed components organized according to 

their variance. The PCA transform is also an effective method for extracting the brain 

signals’ features. The PCA transformation is represented in (Eq. 3): 

Ty W x=  (Eq. 3) 
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Where, 1[ , , ]T n TW w w=  is weighting matrix for n input channels. Each element 

of this matrix is calculated by solving the eigenvalue decomposition of covariance 

matrix TR xx=  (Aapo H., 2001) 

2.6.2.5 Independent components analysis (ICA) 

This method is similar to the PCA method which is effective for removing blind 

source noises and distinction of unknown brain signal sources. This method’s 

assumption is linear independency between brain signal sources with zero mean value 

white noises. The ICA attempts to calculate the weighting matrix which is transferring 

the observed brain signals by EEG to the brain source signals. The ICA method 

benefits from obtained brain source signals linear independency which considers the 

acquired brain source signal’s different neurophysiological origins. The elements of the 

weighting matrix are ordered according to their linear independency estimations. This 

will help to remove the elements with the least relevance and predictability (Aapo H., 

2001). This method could be summarized as two consecutive PCA transformations. 

2.6.2.6 Autoregressive coefficients modeling (AR) 

This method is useful in communication, control and sensory array processing. This 

method assumes a linear relation between the brain source signals and observed EEG 

signals and feed the model by an additional white noise signal. This asset could be 

useful in analyzing SSVEP brain signals because of their origin characteristic in visual 

cortex. This model is generating a casual signal in which amplitudes are obtained from 
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data samples up to current time step. The linear formation of M-order autoregressive 

coefficients model is represented in (Eq. 4): 

i i1 i iM i iS (t) = a S (t - 1)+· · ·+a S (t - M) + (t)ε  (Eq. 4) 

Where, Si is the estimated brain source signal for the ith channel at time step t. The 

aij is the corresponding autoregressive coefficient and i (t)ε is noise signals’ amplitudes 

at time step t. This model order defines the number of previous signals’ amplitudes 

(time steps) which estimate the current signal amplitude (time step). AR model 

estimates both of the autoregressive coefficients and estimated signal variance. The 

outputs of this model are appropriate for computing the signal to noise ratio (SNR) of 

the filtered signals (Tan D. S., 2010). 

2.6.3 Feature Classification and Channel Selection 

This part of brain signal processing is classifying the feature space or selected channels. 

Previous steps were an effort to extract the featured signals and to improve their signal to 

noise ratios. The Classifiers are used to set BCI systems’ parameters from training sessions’ 

data and to develop preliminary models for controlling BCI systems. The classifications’ 

methods are usually selected based on the BCI systems purposes and have no notable 

advantages relative to each other. The typical methods for classifications are the fisher 

linear discriminant (FLD), support vector machine (SVM), Bayesian classifiers, Hidden 

Markov Model (HMM) and the Adaptive Logic Networks (ALNs). The following 
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paragraphs briefly describe the FLD, SVM and ALN classification methods [ (Tan D. S., 

2010), (Theodoridis S., 2009)]. 

2.6.3.1 Fisher linear discriminant (FLD) 

This method transfers higher dimension featured data to lower dimension space. 

This method is more practical for classifying input data into two separate classes. The 

separability of these classes is measured by the ratio of classes’ means distances and 

between classes’ variations (J(w)). This operation maximizes the between classes 

scatters. This procedure is demonstrated in (Eq. 5). 

T
B

T
W

w S wJ(w) = 
w S w

 (Eq. 5) 

Where, Sw and SB are the within and between class scatters, respectively. These 

parameters are as follows, respectively. 

T
B 1 2 1 2S = (m  - m ) (m  - m )  (Eq. 6) 

W 1 2S  = S  + S  (Eq. 7) 

Where, Si and mi are the standard deviation and average values of each class, 

respectively. In (Eq. 5), W is the weighting vector which diagonalizes both of within 

and between class scatters. This vector is calculated from the Eigen Decomposition 

(ED) of (Eq. 8) (Theodoridis S., 2009). 
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-1

1 2W = S (m  - m )w  (Eq. 8) 

  

2.6.3.2 Regression methods for classifications 

Typically regression methods are linear classifiers which predict the system outputs 

from a linear model. These methods derive the weighting matrix (W) to correlate the 

inputs (x) to the estimated outputs ( ŷ ), while involving the additional constant value 

(b) for the better fitting regression model. The general format is presented in (Eq. 9). 

Tŷ = w x + b  (Eq. 9) 

2.6.3.3 Adaptive logistic networks (ALN) 

The ALN is a more general linear regression method and consists of different linear 

functions to improve the capability of pattern classification. These functions (L) are 

presented in (Eq. 10) for the jth EEG channel and ith time step. 

n

j ij j
i=1

L  = w X  + C j∑  (Eq. 10) 

Where, w is the weighting vector for the input data (X) followed by the function 

constant (C). These sets of functions create the decision tree and their values are 

thresholds for true and false logical decisions. Each function could be considered as a 

nodal point for connecting to other nodes. 
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2.6.3.4 Support vector machines (SVM) 

This method is similar to previous methods with respect to projecting inputs (y) to 

outputs space (f(y)) with linear transformation and includes the corresponding 

weighting (w) and dependent vectors (w0). The general form of an SVM method is 

shown in (Eq. 11). 

0f(y) = w y + w′  (Eq. 11) 

The SVM method results to series of functions which compute the contingency of 

inputs to different sets of classes. Each class has specific SVM regression function. The 

inputs data-sets (y) with higher function output (f(y)), probably belong to that class. 

This method’s optimization depends on the weighting vectors or so called supporting 

vectors represented by i i iw = c y
i

α∑  where c andα  are positive Lagrangian multiplier. 

This method could be employed in nonlinear optimization and classification problem 

when the kernel functions replace the support vectors (Brabanter, 2011) 

2.7 Summery 

The methods described in this chapter are commonly used by BCI research groups to 

explore and extract brain signals features. The presented processing steps typically form the 

algorithms for generating the final desired outputs that classify a feature associated with a 

brain signal. However, dramatically increasing demand for more reliable and practical 

online BCI systems requires development and implementation of more tailored algorithms 

for each BCI system. Accordingly, many research studies have focused on developing 
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processing algorithms which consider the brain signals origins characteristics. To increase 

the real-time performance resolution of these systems, the analysis algorithms should 

adaptively calculate system parameters by employing machine learning procedures. The 

next chapter will focus on describing the newly modified algorithms for analyzing the 

SSVEP brain signals. The analysis methods are adjusted based on the SSVEP brain signals 

and proposed detection algorithms are feasible for implementing in future online BCI 

systems.  
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Chapter 3: Analysis Methods and Procedures 

Among different brain signals, event related potentials and especially the visually 

evoked potentials (VEPs) are more detectable by EEG. These types of signals are less 

affected by artifacts and power-line noises. These signals are more stable in terms of their 

spatial and temporal distributions on visual cortex as well. The SSVEPs described in 

chapter 2, generate similar signal patterns and frequency components of visual stimulus. 

This characteristic is useful in estimating the original brain source signals. Overall, this 

characteristic has increased the variety of available SSVEPs analysis procedures to enhance 

the system accuracy and reliability [ (Wolpaw J. R., 2007), (Alonso N., 2012), (Millán J. D. 

R., 2010), (Elitzur A.C., 2010), (Dobriyal M., 2011), (Bakardjiana H., 2009) (Vasquez P. 

M., 2008)]. 

An accurate analysis model can detect user intention or command for controlling the 

BCI system. A reliable and stable system generates faster correct commands which do not 

dramatically degrade the system accuracy for different subjects/test sessions.  

Chapter 2 describes the traditional analysis procedures to acquire desirable outputs 

from brain signals. These steps similarly apply to SSVEP response detection algorithms. 

Figure 6 demonstrates the schematic of a typical SSVEP BCI system algorithm. 

The Analysis steps which are presented schematically in figure 6 could be modified or 

combined in one step, according to anticipated outputs. 
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Figure 6. Schematic SSVEP BCI system algorithm 

This chapter formulates and employs different modified analysis methods to detect the 

SSVEP brain signal responses, accurately. These presented methods are also modified to 

decrease the BCI systems intra/inter subjects’ performance error (True Positive, TP) 

variations. The Formulation and organization of the analysis algorithms are presented in 

two sections. The first section includes the newly modified multivariate data analysis 

algorithms. The second section includes the employed adaptive filtering algorithms. These 

algorithms are developed for more accurate and reliable SSVEP response detections. These 

algorithms may not include all typical steps which are illustrated in figure 6. The common 

characteristic of these analysis algorithms is the ability to compare the correlation of the 

recorded brain signals with the LED stimuli signals flickering with different constant 

frequencies (in this research, 10, 11, 12 and 13 Hz). 

The multivariate analysis methods attempt to find the underlying correlation between 

two sets of input data. These data-sets describe the same characteristics of a specific object. 

Typically, input data-sets are consisted of newly recorded and available known data to 

obtain more knowledge about the nature of that object. In this thesis, Canonical Correlation 
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Analysis (CCA) and Co-Inertia analysis are employed to evaluate the correlation between 

the LED stimuli and subjects’ visual brain signals.  

Adaptive filters are the signal processing methods in which a set of recorded signals 

can be filtered and denoised with the knowledge of their characteristics. These types of 

signal processing algorithms estimate the source signals from the recorded brain signals 

based on different defined criteria. These criteria commonly set to minimize the estimated 

source signal error value. To achieve this, the criteria define a cost function and optimized 

result will be obtained from minimizing the cost function value for each set of input data. 

Adaptive filters are specifically categorized as robust filters, if additional criteria for 

defining the error boundaries are considered. In this thesis, to obtain the original brain 

signals from the recorded EEG signals and modeled LED signal, three different adaptive 

filters are employed. These filters are adaptive Kalman filter, adaptive robust Gauss-

Newton filter and constrained discrete DFT block adaptive filter.  

Each algorithm has a decision making method which is based on either selecting the 

most correlated brain source signals with a LED signal (multivariate analysis methods) or 

selecting the brain source signals with the least noise variation (adaptive filtering methods). 

The obtained accuracy for each method demonstrates the number of correct user intention 

detections among the time-windows of a test session. The information transfer rate (ITR) is 

considered as criterion for evaluating these methods ability for fast response detection.  

In this thesis, two sets of input signals are considered for detecting the subjects’ SSVEP 

responses. The first set of input signals are the brain signals recorded by 8 EEG channels 

from visual cortex (presented in figure 3). The second set of input signals are the channels 
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of LED stimuli which are flickering at 10, 11, 12 and 13 Hz frequencies. The LED signals 

are square wave signals and their Fourier transform modeled channels consist of sine and 

cosine elements with different harmonics. In this thesis, each flickering LED signal (with 

constant frequency) is consisted of 6 channels for 3 harmonics of the signal’s sine and 

cosine elements. 

To evaluate and verify the proposed methods’ accuracy, 2 different sources of recorded 

brain signals are employed. The first set of data provided by g.TEC CO. which were 

recorded from 4 healthy trained subjects. The second set of recorded brain signals are 

obtained from 30 healthy subjects aged between 18-65 years old participating in a SSVEP 

test session at the CISR laboratory. The general schema of SSVEP analysis procedures 

used in this thesis is presented in section  3.1. 

3.1 The Brain Recorded Signals’ Algorithms Schema 

In this part of the thesis, schematic structure of recorded brain signals’ analysis 

algorithms which have been used to detect user intention will be explained, briefly. Then, 

employed Matlab programming codes of these processing algorithms will be presented in 

Appendix A.  

Figure 7 shows a general structure in which recorded brain signals processed with 

introduced analysis methods. The final outcomes of processing methods are compared to 

the test trials’ procedure to determine the accuracy rate of each method. Figure 11 presents 

a schema of transformed data and their corresponding Co-Inertia axes in featured space for 

Co-Inertia analysis method. 
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Figure 7. General flowchart representing the processing methods for recorded brain 
signals 

Figure 8 illustrates a general schema of adaptive filters’ structure. The schematic figure 

of CCA method is presented in figure 9. 

 
Figure 8. A schema of adaptive filters 
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In figure 7, Data are collected by g.USBamp with 16 electrode channels. A 0.5-30 Hz 

band pass filter along with 50 Hz notch filter are used to remove the artifacts and power 

line noises by data acquisition system. The processing part includes five aforementioned 

methods which are explained in this chapter. The analysis methods which are employed are 

as follows: 

• Canonical Correlation Analysis 

• Co-Inertia Analysis 

• Adaptive Kalman Filter 

• Adaptive Robust Gauss-Newton Filter 

• Adaptive Unconstrained DFT Block Filter  

The detailed explanation of each method for processing collected brain signals and 

estimating the original brain source signals are explained in this chapter as well 

(sections  3.2 and  3.3). 

The SSVEP response detection of analysis methods can be categorized in two types of 

decision making processes. The first category of decision making methods is related to 

multivariate analysis methods. These methods are based on detecting the most correlated 

LED signal and brain recorded signal. However CCA method is enriched with additional 

decision making algorithms based on ARMA filter and proposed evaluation methods 

(statistical tests). The Second category of decision making method is based on maximum 

SNR method. This method selects the LED with higher SNR as user intention. 

The SSVEP test session trials are explained completely in chapter 4. The test trials are 

consisted of 4 LEDs flickering with 10, 11, 12 and 13 Hz frequencies, simultaneously. In 
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each test session 5 trials of flickering LEDs are included. In each trial, LEDs are flickering 

for 7-seconds and subjects are asked to focus on a specific LED. 

The user intentions are detected with filtering algorithms during SSVEP test trials. The 

results of analysis algorithms are compared with real test procedure which was planned. 

Then based on comparison, accuracy rate of each analysis method is acquired. 

The Appendix A will provide programming codes which are used for each block in 

figure 7. This appendix has the programming codes aligned based on analysis steps which 

are presented in the schema. Initially, data collection and creating desired time-windows’ 

Matlab codes are demonstrated. Then, each analysis method’s programming code in the 

order that presented in this section is provided. Lastly, decision making methods’ Matlab 

codes for both of multivariate data analysis and adaptive filtering methods are 

demonstrated. 

3.2 The Multivariate Analyses Algorithms 

3.2.1 The Canonical Correlation Analysis 

The Canonical Correlation Analysis (CCA) is a multivariate analysis method which 

attempts to find the maximum correlation factor, ρ in (Eq. 12) between two sets of input 

data. Moreover, input data-sets have an underlying correlation with their obtained 

canonical variants (U and V) [ (Lin Z., 2006), (Legendre L., 2003)]. 

2 2

[ ][ ]
[ ] [ ][ ] [ ]

T T
x y

T T T T
x x y y

E W xy WE UV
E W xx W E W yy WE U E V

ρ = =  (Eq. 12) 
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Wx and Wy are weighting matrices calculated for x (input) and y (expected values) 

matrices, respectively. U and V are Canonical variants. U, V and their weighting matrices 

could be derived with different mathematical solutions. In this section, two consecutive 

PCA are performed by Singular Value Decomposition (SVD) and QR decomposition on x 

and y matrices to solve (Eq. 12) and find the proper canonical variants and weighting 

matrices. This method and its solution’s proof are explicated by [ (Legendre L., 2003), (Bin 

G., 2009)] and will be reviewed in following section.  

To find the weighting matrices and canonical variants, x and y matrices are decomposed 

for finding Q (orthogonal) and R (upper triangular) matrices, respectively. Therefore: 

x xx Q R=  (Eq. 13) 

y yy Q R=  (Eq. 14) 

Next, SVD decomposition of T
x yQ Q  matrix should be obtained. The decomposition 

solution eigenvalues and eigenvectors are V, S and D matrices, respectively. The weighting 

matrices are calculated from (Eq. 15) and (Eq. 16). 

1
x xW R S−=  (Eq. 15) 

1
y yW R D−=  (Eq. 16) 

QR decomposition method considers the V matrix elements as canonical correlation 

factors. 
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In this research, two sets of data from recorded brain signals (EEG signals) and LED 

stimuli signals are considered as inputs. The LED stimulation-box flickers with square 

wave signals at specific frequencies. The LED signal is considered reference signal 

(expected values matrix in CCA) and modeled by the sine and cosine elements of each 

flickering frequency. LED reference signal model is demonstrated in (Eq. 17). 
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 
 
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  (Eq. 17) 

Where, fi is the LED flickering frequency and h is frequency harmonics indicator which 

specifies the number of the extracted brain signals’ frequency components. Figure 9 

demonstrates recorded brain signals and LED stimulation signal components along with 

their obtained canonical variants for a 1-second time-window. 

 

Figure 9. Canonical Correlation Analysis (CCA); Brain signals and their first canonical 
variant (top) & LED reference signals and their First canonical variant (bottom) 
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Bin et al. and Lin et al. suggested that stimulation signal with the highest correlation 

factor to be selected as user intention for SSVEP BCI systems with different stimulation 

frequencies [(Bin G., 2009), (Lin Z., 2006)]. However, in this thesis two additional decision 

detection (evaluation) procedures are suggested. The first procedure is based on Wilks’s 

ratio and Bartlett’s chi-square significance tests. The second procedure is based on 

Autoregressive Moving Average (ARMA) filtering of obtained correlation factors from 

inputs. The second procedure is a straightforward ARMA filtering of correlation factors 

and the user decision detection is based on the typical higher correlation factor rule, as 

explained. Hence, the following paragraphs only describe the first procedure algorithm. 

3.2.1.1 Statistical significant tests algorithm 

This evaluation procedure, shown in figure 10, is adjusted based on the Wilks’s 

ratio and Bartlett’s chi-square statistical tests.  

It is good to mention that correct decision in figure 10 simply means that all of the 

statistical significant test results and typical CCA higher correlation factor selection 

results are equivalent. In canonical correlation analysis procedures, Wilks’s ratio is 

interpreted similarly as in significance test in multidimensional regression models. (Eq. 

18) expresses Wilks’s ratio (Λ ) (Lattin J. M., 2003). 

1| |
| |

yy yx xx xy

yy

R R R R
R

−−
Λ =  (Eq. 18) 
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Where, R is the covariance or cross-covariance matrix with respect to its subscripts. 

Wilks’s ratio indicates the variance proportion in y (expected values data-set) which 

can be explained by the input data (x). 

In other words, it clarifies the significance level of canonical variants. In this test, 

values near zero are representatives of the strong model. 

 

Figure 10. Statistical significant tests algorithm 
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Another significance test is the Bartlett’s chi-square test (statistical V-test) which 

evaluates null hypothesis of no underlying relationship between x and y. In other words, 

Bartlett’s chi-square factor determinates the lack of correlation between two sets of 

data. The higher values of v are weakening hypothesis of no correlation between the 

data-sets. Bartlett’s chi-square approximation for Wilks’s ratio is expressed in (Eq. 19). 

( 1)[( 1) ]ln( )
2

p qV n + +
= − − − Λ  (Eq. 19) 

Where, V is the approximately 2χ  distributed with p and q degrees of freedom. n is 

the number of observations (data samples). p and q are the minimum ranks of x, y 

matrices, respectively (Lattin J. M., 2003). 

This algorithm evaluates the correlation between canonical variants and their 

corresponding input signals (recorded brain signals and LED stimuli signals). Then, the 

algorithm assesses the correlation level between calculated canonical variants. In this 

algorithm, the priority of determining the user intention is on Wilks’s ratio. The 

evaluation procedure substitutes its determined LED index (user intention on specific 

flickering LED) with the obtained LED index (user intention on flickering LED) from 

typical maximum correlation factor selection. This means that for the weak models 

obtained from input signals (the noisy signals) the CCA output index (detected LED) 

reflects the selected LED index based on suggested statistical significance tests.  
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3.2.2 The Co-Inertia Analysis  

Co-Inertia analysis is a symmetric correlation analysis method which searches for the 

common structures between two data-sets. The data-sets should explain the characteristic 

of the same objects and could be equally interpreted in an algorithm. This method projects 

the data-sets onto axes of their eigen-analysis of cross-set covariance matrix (Co-Inertia 

axes) to detect their common characteristic. The projecting can be performed with various 

transformation methods. It’s mentioned that input data-sets are the recorded brain signals (8 

EEG channels) and LED flickering modeled signal (6 channels of sine and cosine elements 

of the flickering frequency). This method is not hypothesizing the directional effect and 

does not consider influence of data-sets on each other. The algorithm is based on SVD 

decomposition of centered data-sets (centered with data mean) covariance matrix and then 

projecting the centered data-sets onto axes of their cross-covariance matrix (Legendre L., 

2003). This algorithm is briefly described herein. The cross-covariance matrix of the two 

centered data-sets is computed in (Eq. 20). 

'1
1xy cent centCov y x

n
=

−
 (Eq. 20) 

Where, x and y are data-sets with same number of objects (n, matrix rows) and different 

number of channels (Np and Nq, EEG and LED signal channels, respectively). Covxy is 

cross-covariance matrix and centy  and centx  are the centered y and x data-sets, respectively. 

The Co-Inertia value is obtained from sum of squared covariances in Covxy matrix. This 

value is the sum of squared eigenvalues where their eigenvectors represent the Co-Inertia 
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axes. This partitioning is performed by SVD decomposition of the Covxy matrix as 

illustrated in (Eq. 21). 

'( ) ( ) ( ) ( )xy p q p qCov N N V N c W c c U c N× = × × ×  (Eq. 21) 

Where, c is the minimum rank of x and y matrices. W is the diagonal matrix of eigenvalues 

and U & V are the eigenvector matrices.  

The projection of data-sets onto their Co-Inertia axes transfers the data to common 

multivariate feature space. This can be calculated with multiplying the centered data by 

their eigenvectors. Then, the acquired matrix is normalized with respect to its columns. The 

(Eq. 22) and (Eq. 23) present projection of x data-set to the feature space.  

t centf x V= ×  (Eq. 22) 

After normalizing the columns of ft matrix to length 1, projection process can be 

completed through (Eq. 23). 

*
1 1( )tF n Wf= −  (Eq. 23) 

Where, *
tf is the normalized ft matrix from (Eq. 22). The projected matrix for the y 

data-set could be calculated with the same procedure.  

In this research, LED stimulation signal and signals from EEG device are considered as 

two input data-sets which are describing the same concept. Therefore, Co-Inertia algorithm 

analysis procedure is employed to project them to same feature space for evaluation. The 

simpler decision detection method finds the difference between two projected data-sets. In 
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the case of SSVEP BCI systems with different stimulation signals, the stimulus signal with 

least difference from brain signals is detected as user decision or intention. Figure 11 

presents a schema of the transformed data-sets into the same feature space and co-inertia 

axes. 

 

Figure 11. A schema of Co-Inertia space and Co-Inertia axes 

3.3 Adaptive Filtering Algorithms 

Adaptive filters have an important role in modern signal processing and control 

applications where processing the data without a priori knowledge is required. These 

algorithms have been employed for miscellaneous systems in communications, control, 

radar and biological engineering (Adali T., 2010). Recently, by increases in demand for 

more commercial BCI products, adaptive filters and machine learning algorithms are 
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becoming more prominent. Recent adaptive filters’ implementations in SSVEP BCI 

systems along with the studies’ promising outcomes have encouraged different research 

groups to improve the reliability and generalities of these algorithms [ (Haufe S., 2011), 

(Friman O., 2007), (Vasquez P. M., 2008), (Mason S. G., 2000), (Blankertz B., 2008)]. In 

this thesis, some of adaptive filtering algorithms, suitable to be employed in brain signal 

processing and SSVEP response detection are evaluated. Prior research studies on adaptive 

filters with corresponding cost functions for reducing the error’s rate have inspired any 

further research. These filters principally reduce the filter models’ parameters error rate at 

each time step (data sample). The modifications are applied through cost functions to 

converge the system error boundaries. 

3.3.1 The Adaptive Kalman Filter 

A major assumption in modeling of SSVEP BCIs is correlation between the observed 

brain signals and LED stimuli signals. Accordingly, we are trying to estimate the original 

brain source signals from LED stimulus (6 channels of modeled LED signal) and the 

observed brain signals (collected by 8 EEG channels) by means of an adaptive Kalman 

filter. Finally, the user visual focus on LED lights will be obtained from estimated source 

signals Power Spectral Densities (PSDs) and maximum signal to noise ratio (SNR). The 

SNR is a criterion which calculates the average ratio of the signal’s power amplitudes over 

the signal noise amplitudes. 

First, Adaptive Kalman filtering of a single observed signal channel and one desired 

LED channel is described in the following section. Then, this filtering method is extended 
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to multiple numbers of EEG and LED channels to estimate brain source signals for a 

multiple-input multiple-output (MIMO) system. Finally, the SSVEP responses detection 

algorithm is presented. 

3.3.1.1 Adaptive Kalman filtering model 

Adaptive Kalman filter is based on a linear model between two sets of input 

variables which is presented in (Eq. 24) and (Eq. 25) in a state space form. For a time-

invariant system, this model estimates the output xj from measurement matrix d and 

input data matrix H (Sayed, 2008). 

0d Hx v= +  (Eq. 24) 

1
2

0jx xλ
−

=  (Eq. 25) 

Where, d is an N×1 matrix of LED stimulus signal for each frequency harmonic, N 

is the number of observations, which is set as 256 Hz; d includes sine and cosine 

elements of LED stimulus signal with specific frequency. x0 is the M×1 weighting 

matrix and λ is a positive multiplier (forgetting factor). H is an N×M matrix of 

observed brain signals for an M-order adaptive filter. v is an N×1 column matrix of 

noise values and xj is estimated brain source signals at jth time step.  

This model can be used with different state-space models. According to prior 

assumption, the brain source signals are evoked with similar patterns to the stimuli 

signals. In this research, stimuli are the LED lights. Their constant flickering frequency 
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could be modeled with square wave signals and presented by its Fourier Transform 

(FT) sine and cosine elements. This stimuli signals model is similar to the reference 

signal model in CCA method and demonstrated in (Eq. 17).  

The matrix format of Eq. (1) for one LED stimulus signal channel and an EEG 

observed brain signal channel is presented in (Eq. 26). 
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(Eq. 26) 

In this equation, λ  is called forgetting factor with a value between 0 and 1. As λ  

value approaches to 1, the parameters are more affected by values of previous time 

steps. u is an N×1 column matrix of observed brain signals. λ  and u matrices, in (Eq. 

26), are forming the same H matrix in (Eq. 25). 

This linear model estimates x0 (weighting) matrix by solving the exponentially-

weighted recursive least square cost function formulated in (Eq. 27). 

0

1 2*
0 0 0

0
min ( ) ( )

N
j

jx j
x x d j u xλ λ

−
−

=

 
Π + − 

 
∑  (Eq. 27) 

Where, Π  is an arbitrary positive definite matrix which is usually selected by 

multiplying a small positive value (δ ) by identity matrix (I). d(j) and uj are the values 

of d and u matrices at jth time step. By factoring out the constant factor Nλ  from (Eq. 
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27), the cost function can be rewritten as (Eq. 28). This factorization is helpful for 

simplifying the cost function solution. 

1 2*
0 0 0

0
( ) ( ) ( )

N

j j
j

j x x x y j u xλ
−

=

 
Π + − 

 
∑  (Eq. 28) 

Where, y(j) and xj quantities are defined in (Eq. 29) and (Eq. 30), respectively. 

( )( )
( ) j

d jy j
λ

  (Eq. 29) 

0

( )j j

xx
λ

  (Eq. 30) 

From (Eq. 26) and (Eq. 30), it is concluded that xj satisfies the condition in (Eq. 31) 

which is the estimation for a brain source signal channel at the jth time-step. 

1
2

1j jx xλ
−

+ =  (Eq. 31) 

(Eq. 24) to (Eq. 31) define the Kalman filter parameters for estimating a brain 

source signal (xj) from one LED stimulus signal channel (d) and an observed brain 

signal channel (u). 

In this research, data was collected from 16 EEG channels (8 EEG channels from 

visual cortex for SSVEP response detection) and LED stimulation-box consists of 4 

LED channels which result a MIMO system. Therefore, the system has 12 inputs due to 
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4 LED channels and 16 EEG signal channels (note: for each LED channel, 3 frequency 

harmonics are considered) and 24 outputs (4 LED x 6 estimated brain source signal per 

LED). The following section extends the adaptive Kalman filter for a MIMO system. 

3.3.1.2 Adaptive Kalman MIMO filter 

For a system with Nq channels of LED stimuli signals and Np channels of observed 

brain signals, an M-order multiple-input multiple-output (MIMO) adaptive Kalman 

filter model can be rewritten to calculate systems parameters at each time step. In an M-

order MIMO model, Nq channels of LED stimuli and Np channels of observed brain 

signals are presented in vector format in (Eq. 32) and (Eq. 33), respectively. 

1 2( ) ( ) ( ) ( )Nqd j d j d j d j =    (Eq. 32) 

1 2( ) [ ( ) ( ) ( )]NpU j U j U j U j=   (Eq. 33) 

Where, d(j) values are scalars, equal to each LED stimulus signal amplitude at jth 

time step. Columns in d vector are sine and cosine elements of different stimulus signal 

harmonics. Each U(j) vector element is a channel of buffered brain signal based on the 

filter order which is presented in (Eq. 34). 

( ) [ ( ) ( 1) ( 1)]i i i iU j u j u j u j M= − − +  (Eq. 34) 

From (Eq. 33) and (Eq. 34), U is a 1×(M×Np) vector. 

Considering input vectors and initial values of 0| 1 0P − = Π  and 0| 1ˆ 0x − =  , system 

parameters for j≥0 are calculated from (Eq. 35) to (Eq. 39) (Sayed, 2008). 
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*
| 1( ) 1 ( ) ( )e j jr j U j P U j−= +  (Eq. 35) 

1
*2

, | 1 ( ) / ( )Np j j j ek P U j r jλ
−

−=  (Eq. 36) 

1
2

| 1ˆ( ) ( ) ( ) j jv j d j U j xλ
−

−= −  (Eq. 37) 

1
2

1| | 1 ,ˆ ˆ ( )j j j j Np jx x k v jλ
−

+ −= +  (Eq. 38) 
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j j j j
j j j j

j j

P U j U j P
P P

U j P U j
λ − −−

+ −
−

 
= − 

+  
 (Eq. 39) 

Where, ( )er j  is called conversion factor and ,Np jk  is a 1× MP vector of Kalman 

filter gains at each time step. ( )v j  is a 1× q vector, called innovation variables vector 

which represents the noise signals in this model. Moreover, at each iteration j, because 

xj is the scaled factor of x0 (weighing matrix), the brain source signals’ estimations are 

obtained from (Eq. 40). 

( 1) 2
0| 1|ˆ ˆj

j j jx xλ +
+=  (Eq. 40) 

Where, 0|ˆ jx  is the solution of exponentially-weighted recursive least square cost 

function in (Eq. 41) (Sayed, 2008). 
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1 2*
0 0

0
min ( ) ( )

N

j jx j
x x y j u xλ

−

=

 
Π + − 
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∑  (Eq. 41) 
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Therefore, in summary for Nq channels of EEG (16 here) and Np channels of LED 

(4 here), 0|ˆ jx  in (Eq. 40) estimates the brain source signals (6 signals for each LED, 

totaling 24 signals). 

3.3.1.3 SSVEP response detection 

The SSVEP signal patterns are ideally described by their exogenous stimulus 

signal. This assumption simply expresses that frequency components of SSVEP power 

spectrum should reach their peaks at frequency harmonics of stimulus signal. Figure 12 

demonstrates the recorded brain signals (EEG measurements), measured from subject 1 

for a 1-second time-window, evoked by the 10 Hz LED.  

Figures 13 to 15 illustrate the estimated power spectrum of first EEG signal channel 

for the 1st, 2nd and 3rd harmonics of 10 Hz frequency, respectively. To detect the 

presence of SSVEP responses at each time-window, statistic t-test employed to 

calculate the SNR according to (Eq. 42) (Friman O., 2007). 

,
2

1 1 ,

ˆ( )1
ˆ

p hN N
j i

i jp h j i

S f
SNR

N N σ= =

= ∑∑  (Eq. 42) 

Where, Np and Nh are the number of EEG channels and frequency harmonics, 

respectively. ,
ˆ( ) j iS f  is the estimated power spectrum of SSVEP signal for the jth 

harmonic and ith brain source signal. 2
,ˆ j iσ  is the estimated power of noise signal for the 

jth harmonic and ith brain source signal. 
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Figure 12. Measured brain signals from subject 1 
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Figure 13. 1st Harmonic frequency component of the brain source signals from subject 1 

 

 

Figure 14. 2nd Harmonic frequency component of the brain source signals from subject 1 
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Figure 15. 3rd Harmonic frequency component of the brain source signals from subject 1 

Commonly, t-test averages the signal to noise ratio (SNR) over different frequency 

harmonics of a brain source signal in a specific time-window. The power spectrum 

estimation of each brain source signal at frequency harmonic h is obtained from the 

squared magnitude average of Fast Fourier Transform (FFT) of each time-window. 

This power estimation, ˆ( )S f , is presented in (Eq. 43). 

2
(2 )

1

1ˆ( ) s

N
j fh F n

n
ns

S f x e
F N

π−

=

= ∑  (Eq. 43) 

Where, Fs is the sampling rate and N is number of observations in sequence xn. f is 

the desired frequency (Hz). The SSVEP power spectrum estimation at each harmonic is 

equal to the value of ˆ( )S f  at that frequency. In this thesis, data sequences with 256 

samples are used to estimate power spectrums. 
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Both of brain source signals and their noise signals are non-stationary. Therefore, to 

consider non-stationary property of signals in calculating SNR, both of the SSVEP 

response power spectrum estimation and noise variance power estimation values should 

be obtained from the same time step’s input signals (both PSD and noise’s variance 

should be calculated from time-windows with the same length). In this model, SNR 

values evaluate the level of brain signal amplitudes in comparison to the noise signal 

amplitudes while there is no SSVEP stimulus. To compute SNR, variance of noise 

signals calculated by the model indicates white noises without SSVEP responses. To 

estimate noise variance at each time-window, a 25-order autoregressive (AR) model is 

fitted on noise signals which are obtained from adaptive Kalman filter model. This 

value could be underestimated but it will be independent from presence of SSVEP 

responses. AR(p) model for an input sequence of white noise, xn, is expressed in (Eq. 

44). 

0

p

n k n k
k

x a y −
=

=∑  (Eq. 44) 

Where, yn is the estimated output value (n=1,…,p), a  is the vector of autoregressive 

model parameters and p is the order of AR model. AR parameters are estimated by 

solving the Yule-Walker equations with Levinson-Durbin recursion. The estimated 

noise variance from Yule-Walker AR(p) model for each brain source signal and 

frequency harmonic, h, will be obtained from (Eq. 45) (Friman O., 2007). 
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j i p
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a e π
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−

=

=

+∑
 

(Eq. 45) 

Where, N is the number of observations, a  is the vector of AR model parameters. 

2σ̂  is the total noise variance estimated by AR model. 

In this thesis, 4 LEDs are flickering at 10, 11, 12 and 13 Hz. To detect the user 

intention on stimuli LEDs, the observed brain signals are filtered via a 10-order 

adaptive Kalman filter with forgetting factor of 0.98 (best fitted value). Then SNR 

value of filtered signals is calculated at each time-window by t-test. The maximum t-

test value of LEDs is considered as user intention and its stimulus signal as selected 

LED. The values of the filter order and forgetting factor are empirically selected based 

on expert decision. Generally, these values should be selected to reach the optimum 

system accuracy.  

This model is configured for an online BCI system to calculate the brain source and 

noise signals in each time step. For detecting the SSVEP responses, power spectrum of 

brain source and noise signals are obtained at each time-window. Figure 16 shows the 

estimated brain source signals, which are filtered with Kalman filter for 3 frequency 

harmonics of 10 Hz LED stimulus signal. Signal channels in figure 16 are sine and 

cosine elements of the LED stimulus signal. Each element forms a channel of filtered 

signal for each frequency harmonic. Figure 17 demonstrates the noise signals computed 

from adaptive filter algorithm. The channels in this figure represent the noise signals 

for their corresponding estimated brain source signals. Signal’s channels presented in 
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figure 16 and figure 17 are the results of first trial of subject 1 with user attention on 10 

Hz LED. The obtained brain source signals and noise signals for subjects 22 and 7 are 

demonstrated in chapter 5 section  5.1.2. The subject 22 SSVEP test results were 

satisfactory and subject 7 showed a poor performance during the SSVEP test session. 

These figures present that the differences between brain sources or noise signals are not 

detectable without additional SSVEP response detection. 

 

Figure 16. Various harmonics of estimated brain source signals which resulted from a 10 
Hz stimulus signal, collected from subject 1 
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Figure 17. Obtained noise signals with 10 Hz LED stimulus from subject 1 

3.3.2 The Robust Gauss-Newton Algorithm 

Adaptive filters employ different design criteria to estimate the original signals 

from measurement signals and desired sequences. Adaptive filters are robust, when 

small disturbances do not degrade filter performance. In other words, small 
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disturbance-energy could not result in large estimations-error energy. The defined 

criteria for filtering input signals are tracking of the robustness of adaptive filters. 

Although, the robust filters have common characteristics with adaptive filters such as 

adaptive Kalman filter, these types of adaptive filters privilege from additional stability 

and convergence characteristic in respect to adaptive Recursive Least Square (RLS) 

filters. The quadratic cost functions which is employed in robust filters do not require 

weighting matrices to be positive definite to lead the solution into unique minimization 

problem. The difference between robust and RLS adaptive filters is the acquired 

solutions for unique output. The solution for RLS cost functions obtained from 

approximated minimization problem but solution in robust filters leads to the optimal 

minimization problem (Sayed, 2002). 

3.2.2.1 Adaptive robust filter modeling 

As it has been discussed before, the major assumption for analyzing SSVEPs is the 

presence of underlying correlations between these signals and exogenous stimulus. The 

SSVEP responses are detected when brain source signals are correlated to one of 

stimuli signal patterns. The analysis has two steps. The first step is filtering the 

observed brain signals to estimate original brain source signals. The second step is 

based on statistical t-test, which calculates the cumulative signal-to-noise ratios (SNR) 

of the estimated brain source signals. The SSVEP response detection is based on 

maximum stimuli cumulative SNR. 

To model the correlation between stimuli reference signals and observed brain 

signals, the linear model with an N×Np reference signal matrix d, and an N×M 
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observed brain signals matrix U, is considered in (Eq. 46). M represents the filter order 

and Np is the number of observed brain signal channels. 

0( ) ( ) ( )d i U i w v i= +  (Eq. 46) 

Where, 0w  is the transformation matrix and ( )v i  is the disturbance matrix for 

i=0,1,…,N-1 (i represents the time steps). The disturbance sequence is assumed to have 

a finite energy. Given the input signals in (Eq. 46), the estimated brain source signals at 

ith time step, is calculated from (Eq. 47). 

0( )is U i w  (Eq. 47) 

Where, in this equation, ( )U i  is the vector of buffered input signals with Np signal 

channels. For an M-order multiple-input multiple-output (MIMO) system input signal 

presented in (Eq. 48). 

1 2( ) [ ( ) ( ) ( )]PU i u i u i u i=   (Eq. 48) 

Where, ( )jU i  (j=1:P) is the jth buffered observed signal channel at time step i, 

which is illustrated in (Eq. 49). 

( ) [ ( ) ( 1) ( 1)]j j j jU i u i u i u i M= − − +  (Eq. 49) 

The Transformation matrix 0w  is obtained by minimizing quadratic cost function in 

(Eq. 50). 
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0 0 * 0 0 * 0( ) ( ) ( ) ( )J w w w d uw W d uwΠ + − −  (Eq. 50) 

Where, Π  and W  are the Hermitian matrices ( P PIδ × ) and play the role of 

weighting matrices. To achieve the filter robustness, criterion which is defined based on 

quadratic cost function in (Eq. 50) is demonstrated in (Eq. 51). 

2

20
1

20* 0
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i

s d i

w w v i
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−

=

−
≤

Π +

∑

∑
 (Eq. 51) 

 

 

In this criterion, γ  is a positive scalar and encompasses the analysis error 

boundaries. When the value of γ  is closer to 1 the filter robustness criterion is more 

restrictive. The matrix, Π , can be any positive-definite matrix. In this equation, the 

numerator is the estimation-error energy. The denominator second term is the energy 

of disturbance and first term is the weighted energy of error in estimating the 

transformation matrix (Sayed, 2002). The brain source signal estimations which satisfy 

the robustness criterion in (Eq. 51) are calculated by equations (Eq. 52) to (Eq. 55). 

1( )i is U i w −=  (Eq. 52) 

1 1 2 *
1 1 ( ) ( )i iP p U i U iγ− − −
− −= −  (Eq. 53) 

*
1

1 1*
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( ) [ ( ) ( ) ]
1 ( ) ( )
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i i i
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P U iw w d i U i w
U i P U i
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− −

−

= + −
+





 (Eq. 54) 
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1

( ) ( )
(1 ) ( ) ( )

i i
i i

i

p U i U i pp p
U i P U iγ

− −
− −

−

= +
− + 

 (Eq. 55) 

These equations satisfy the robustness condition mentioned in (Eq. 51) for 0i ≥  

and iP  >0 (proof of the robust adaptive filtering algorithm can be found in (Sayed, 

2002)). The Initial condition usually considered are 1 0w− =  and 1
1p −
− = Π  (Sayed, 

2002). Figure 18 illustrates the estimated brain source signals with 10 Hz LED stimulus 

signals for a 1-second time-window. 

 

Figure 18. Estimated brain source signals for a 1-second time-window from subject 1. 



www.manaraa.com

 

70 
 

3.3.2.2 SSVEP response detection 

The SSVEP response detection is based on selecting the maximum estimated brain 

source signals SNR, which is calculated for each stimulus signal (LED signal). The 

statistic t-test (SNR) is calculated for each channel of estimated brain source signals. 

Finally t-test presented in (Eq. 56) calculates the cumulative SNR for LED stimuli 

different channels and harmonics. Maximum signal to noise ratio (SNR) will define the 

user attention on LEDs (Friman O., 2007). 

,
2

1 1 ,

ˆ( )
ˆ

p hN N
h j

j h h j

S f
SNR

σ= =

=∑∑  (Eq. 56) 

Where, in (Eq. 56), SNR is cumulative SNR while Np and Nh are the number of 

EEG channels and stimulus frequency harmonics, respectively. ,
ˆ( )h jS f  and 2

,ˆh jσ are the 

estimated power spectral density (PSD) of estimated SSVEP signals and estimated 

noise variations for the hth harmonic and jth signal channel, respectively. This value is 

calculated for estimated brain source signals evoked by each LED stimulus signal. The 

stimulus (LED) with maximum SNR value is considered as user attention. The 

estimated power spectral density for first frequency harmonic of 10 Hz signal channel, 

which is presented in figure 18, is illustrated in figure 19. In this method, estimated 

power spectral density is obtained for all of estimated brain source channels and 

harmonics with 256 Hz sampling rate. In this thesis, 4 LEDs are flickering at 10, 11, 12 

and 13 Hz. To detect the user intention on stimuli LEDs, the observed brain signals are 

filtered through a 10-order robust adaptive filter via Gauss-Newton algorithm (step by 
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step formulation) with 4γ = . The filter order value and the error boundary value should 

be selected to acquire better optimized filer for analyzing the SSVEP brain signals. 

 

Figure 19. The Estimated Power Spectral Density (PSD) of the brain source signals for 
the 1st frequency harmonic of the 10 Hz LED stimulus signal. 

The PSD estimation, ,
ˆ( )h jS f , of each brain source signal at frequency harmonic k  

is calculated from (Eq. 57). 

2
(2 )

,
1

1ˆ( ) s

N
k fhj F n

h j n
ns

S f x e
F N

π−

=

= ∑  (Eq. 57) 

Where, Fs is the sampling rate, N is the number of observations (here, 256 

samples/second) and f is the desired frequency in Hz. To estimate noise variances 2
,ˆh jσ  
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for a time-window, the 25-order autoregressive Yule-Walker (AR(p=25)) model is 

fitted on the estimated noise signals. The 2
,ˆh jσ  for each brain source signal and 

frequency harmonic is obtained from (Eq. 58). 
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(Eq. 58) 

Where, in (Eq. 58), N is the number of data samples and ah is the vector of AR 

estimated parameters. 2σ̂  is the estimated noise variances by AR(p) model for the input 

data samples (here, 256 Hz sampling rate) (Friman O., 2007). 

3.3.3 The Constrained Discrete Fourier Transform (DFT) Block Adaptive Filter 

Generally, adaptive filters with recursive cost functions are problematic in 

convergence and computational complexity. These types of filters are mostly dependent 

on correlation of input data-sets and their regression functions. Meanwhile, their 

computational complexity is highly proportional to input buffered signals or filter 

order. The de-correlation properties of transfer functions such as Discrete Fourier 

Transform (DFT) or Discrete Cosine Transform (DCT) are exploited with adaptive 

transform-domain filters to pre-whiten the input data-sets. Simultaneously, to reduce 

the computational complexity, transform-domain filters are analyzing the data on 

block-by-block based analysis algorithms instead of sample-by-sample based filtering. 

These improvements in transform domain block adaptive filters result in improvement 
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of speed and reduction in computational cost. However, preparing the blocked input 

data for these filters originates a delay time for the system activation. This delay time is 

equal to the time needed for collecting samples for blocked input data (Sayed, 2002). 

To consider both of sine and cosine elements of the stimulus signal (as presented in 

(Eq. 17)), DFT block adaptive filter is employed in this thesis. 

As referred in this section block adaptive filters analyze the blocks of input data-

sets. The DFT block adaptive filter model is similar to adaptive recursive filter models 

and attempts to find brain source signals from the stimulus signal patterns and observed 

brain signals. This model is presented in (Eq. 59) and (Eq. 60). 

, , ( )B n n n B nd U w v n= +  (Eq. 59) 

, 1
ˆ

B n n nd U w −=  (Eq. 60) 

Where, in these equations, ,B nd  is the block vector of the reference signals (here 

stimulus signals) and , ( )B nv n  is the block of the noise signals as presented in (Eq. 61) 

and (Eq. 62), respectively. nw  is the weighting matrix of the model in time-domain. In 

the following equations, n is the data blocked number and B is the number of data 

samples collected in each block. 

,

( 1)

( 1)
( )

B n

d nB B

d
d nB

d nB

+ − 
 
 =
 +
 
 



 (Eq. 61) 
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 
 



 (Eq. 62) 

In this model, nU  is the diagonal matrix of buffered input data and demonstrated in 

(Eq. 63). 
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 
 
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

 



 (Eq. 63) 

and ,i nu  is an 1 /M B×  buffered input data, illustrated in (Eq. 64) for an M-order 

adaptive filter where 0,1, , 2 1i B= − . 

, 0 1( ) ( 1) ( 1)i n i
Mu u n u n u n
B

 = − − +  
  (Eq. 64) 

The major difference between DFT block adaptive filter and recursive filter 

solutions is their pathway for calculating the weighting matrix elements. The DFT 

block adaptive filter transforms the data blocks by Fast Fourier Transform (FFT, here 

presented by F and inverse FFT is presented by F*) to frequency-domain for computing 

estimated brain source signals. Then, This Filter transforms back the estimated signals 

to the time-domain (Sayed, 2002). Figure 20 presents the schematic algorithm of the 

DFT block adaptive filter. 
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Figure 20. Schematic algorithm of the constrained DFT block adaptive filter 

In this figure, ,
c
i nL  is the weighting matrix corresponding coefficient in the 

frequency-domain. c denotes the constrained adaptive filter because of discarding the 

last B outputs of the filtered signal (difference between constrained and unconstrained 

filters is explained by (Sayed, 2002)). ' ( )iu n  is the transformed matrix of the input data 

blocks. The weighting matrix coefficients are calculated from Normalized Least Square 
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(NLMS) cost function in (Eq. 65) which updates with power normalization in (Eq. 66) 

for each block of data. 

' '
, , 1 , ( )

( )i n i n i n i
i

l l u e n
n
µ

λ−= +  (Eq. 65) 

2'( ) ( 1) (1 ) ( )i i in n u nλ βλ β= − + −  (Eq. 66) 

Where, in these equations, 0≤β<1; µ is a small positive step-size parameter and 

should satisfy the condition in (Eq. 67) for analysis of each block. ( )i nλ  is the 

normalizer value for each block and ' ( )ie n  is the model error values in the transform-

domain. 

1
( 1)i n

µ
λ −

  (Eq. 67) 

The following steps summarize the analysis algorithm for one channel of observed 

brain signal collected via EEG and a single channel of LED stimulus signal. The initial 

conditions are defined as, 0≤β<1, , 1 , 1 0c
i iL L− −= =  and ( 1) 0iλ − = . The value of /M B  

should be an integer for blocking the buffered input data-sets properly (note (Eq. 64)). 

The buffered input signal ,B nu  and transformed input signal 2 ,B nU  are analyzed based 

on scheme shown in figure 20 and presented in (Eq. 68) and (Eq. 69), respectively.  
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 (Eq. 68) 
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, 1

{ , 0 : 2 1}B n
B n i n

B n

u
U F col u i B

u −

 
= = − 

 
  (Eq. 69) 

The normalizer value, ( )i nλ , for each block of data is calculated from (Eq. 70) 

(Sayed, 2002). 

2'( ) ( 1) (1 ) ( ) & 0 : 2 1i i in n u n i Bλ βλ β= − + − = −  (Eq. 70) 

The transformed blocks of data for an M-order adaptive filter are obtained from 

(Eq. 71). 

, 0 1( ) ( 1) ( 1) & 0 : 2 1i n i
Mu u n u n u n i B
B

 = − − + = −  


 
(Eq. 71) 

The NLMS cost function value ,i nL , estimated brain source signals in transform-

domain '
,i ny  and constrained weighting matrix coefficients ,

c
i nL  are acquired from (Eq. 

72) to (Eq. 77). To compute model error matrix, the estimated brain signals ,
ˆ

B nd  are 

compared with reference signal ,B nd  in (Eq. 74) (in time-domain). Then, the error 

matrix is transformed into frequency-domain (here, transform-domain) to compute the 

constrained weighting matrix coefficients. This process scheme is shown in figure 20. 
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' '
, , 1( ) & 0 : 2 1c

i i n i ny n u l i B−= = −  (Eq. 72) 

* ' '
, 0 2 1
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, , ,
ˆ

B n B n B ne d d= −  (Eq. 74) 
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0, 0,

1, 1,*

2 1, 2 1,

01
0 02

c T T
n n

c T T
Bn n

B B
c T T
B n B n

l l
Il l

F F
B

l l
×

− −

   
   

    =         
      

 

 (Eq. 77) 

Finally, the blocks of brain source signal estimations ( ,
ˆ

B nd ) and estimated blocks of 

model errors ,B ne  for one channel of EEG signal and one channel of LED stimulus 

signal ( ,B nd ) are presented in (Eq. 78) and (Eq. 79) , respectively. 

,
ˆ ˆ ˆ ˆ{ ( 1), , ( 1), ( )}B nd col d nB B d nB d nB= + − +  (Eq. 78) 

, { ( 1), , ( 1), ( )}B ne col e nB B e nB e nB= + − +  (Eq. 79) 

To develop this algorithm for the SSVEP BCI with Multiple-Input Multiple-Output 

(MIMO) system, the buffered input signals in (Eq. 68) and transformed input data in 

(Eq. 69) should include additional columns which are representatives of the additional 

observed brain signal channels from EEG. As it has been discussed before, in the 
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sections  3.3.1 and  3.3.2, the outcome of adaptive filters (estimated brain source signals 

and model error matrix) should be evaluated for SSVEP response detection. The 

constrained DFT block adaptive filter SSVEP response detection algorithm is similar to 

those aforementioned adaptive recursive algorithms. The SSVEP response detection is 

based on calculating SNR of estimated brain source signals and selecting the maximum 

SNR as user attention. This process is utterly described in sections  3.3.1.3 and  3.3.2.2, 

therefore the repetition of similar algorithm’s description is discarded for this section. 

This method’s results show that further additional steps are required to achieve a 

reliable SSVEP response detection algorithm. Though, the result of this method will be 

used in future research by adding more elaborate signal processing steps. 
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Chapter 4: Experimental Protocol 

This chapter starts with a brief explanation of experimental instruments’ properties 

employed in test sessions and car driving-simulator scenarios. Then, experimental protocol 

of SSVEP test and detailed description of how subjects performed the car simulator tests 

will be explained. The SSVEP analysis algorithms and driving simulator experiments 

results will be discussed in the next chapter.  

The SSVEP data collection and car-simulator scenarios test setup are described in two 

different sections and corresponding outcomes are evaluated in different sections in chapter 

5. The observed brain signals during the driving simulator scenarios are recorded from 

visual, primary and somatosensory motor cortices. The effect of SSVEP stimulation-box 

activation on drivers’ distraction evaluates the possibility of implementing an online 

SSVEP based BCI system as an in-vehicle assistive device.  

The selected analysis methods described in chapter 3 have been applied to two different 

sets of data. First, the data-set collected by g.TEC CO. which was supplied to us by g.TEC 

and included 8 EEG channels brain recorded signals from visual cortex. The second data-

set is an initial experiment to collect human subject data for SSVEP methods’ evaluation 

and validations. This was a precursor subject test before the driving simulator tests, which 

were conducted for the second objective of this thesis, namely to explore and evaluate 

SSVEP as an in-vehicle driver assistance technology. Third, the CCA method was applied 

to collected brain signals during the driving scenarios to detect the correlation between 

subjects’ brain signals’ changes and near collision situations, as described in chapter 5. 
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4.1 Experimental Instruments 

In this part of chapter 4, the instruments which are employed in experiments and the 

system properties and characteristics of each instrument are described. This section begins 

by introducing the car driving-simulator, then continues with explaining EEG device 

system properties and finally finishes by a very concise description of SSVEP stimulation-

box characteristics. 

4.1.1 Driving Car-Simulator 

The car driving-simulator is composed of a full car base, including original controls 

(throttle, brake, steering wheel, blinkers…), five PCs running different parts of the 

simulation, a controller and three projectors. The schema of the car driving-simulator is 

presented in figure 21. One PC is used for inside display, speedometer, and is located near 

car cabin. The 2nd PC, dynamic PC, is used to run the dynamic model of vehicle. The 

dynamic PC is also used to access the controller and to send data to inside-display PC. It 

receives data from controls of the vehicle. The 3rd PC is the central controller of the system. 

It runs the simulation program STISIM which has access to dynamic PC and two other 

side-display PCs via local network. It also corresponds to central display. Two other PCs, 

4th and 5th, are only used for the side displays. Three display PCs are directly connected to 

three projectors. The figure 22 presents the car driving-simulator which is placed in Center 

for intelligence systems research (CISR) laboratory at Virginia science and technology 

campus of the George Washington University (Soudbakhsh, 2011). 
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The Car dynamic movements are simulated by the VDANL program. This program 

uses advanced non-linear models for each vehicle’s part and the car’s global motion. The 

dynamic model uses specific files to provide parameters of the vehicle’s dynamic. These 

files can be adjusted to define vehicle’s performance during the scenarios according to the 

desired outputs.  

It is also possible to edit dynamic model to simulate additional embedded intelligent 

assistive systems by creating a user-defined module. Each module is composed of two 

different parts, a list of break points and a list of functions. The break points specify when 

each function including vehicle dynamic properties must run. The desired break points of 

dynamic module are programmed in advance. This collected list of break points should be 

saved in a file. Then functions which are programmed as a library or selected from preset 

VDNL library run to determine the vehicle dynamic properties. List of the functions is a 

code written to program specific events during each scenario. The preprogrammed library 

of functions also modifies the desired vehicle dynamic parameters and adjusts data 

collection method and sampling rate of the driving-simulator. The complete collection of 

breaking points, functions and dynamic libraries configure the user-defined dynamic 

module. The configuration file should be called from central PC (STISIM program) to 

employ the desired dynamic system. Figure 23 shows a schema of the collocated algorithm 

between the dynamic and central PCs (user defined module structure). 
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Figure 21. The schema of the car driving-simulator 
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Figure 22. The car driving-simulator and SSVEP setup 
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Figure 23. The user defined module structure 

4.1.2  EEG System (g.USBamp) 

The human brain signals are collected by a complete system of sensors (a sensor cap), 

amplifier, connection wires and connections, input/output to a PC and data acquisition 

software and processing code. The system by g.TEC (g.tec, 2013) is employed here. This is 

referred to as the EEG system. The three main physical components of this system are: 

1. EEG amplifier 

2. EEG sensor cap 

3. LED stimulation-box 

Each is described below. 

4.1.2.1 EEG amplifier 

The g.USBamp is a high accuracy biosignal data acquisition amplifier. Depending on 

the data collector sensor, this amplifier preprocesses brain, respiration, eye-movement, 
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heart and muscle activity input signals. gUSBamp is a USB 2 enabled system with more 

than 16 parallel signal channels which record the data with 24 bits. To prevent any 

interfaces between recorded data this system includes 4 ground channels. The input range 

of system is ± 250 mV with a resolution of < 30 nV and allows recording the Direct 

Current (DC) signals without any saturation. The system includes input and output 

channels with capability of communicating with other devices through trigger channels by 

synchronization. A short-cut channel connects the amplifier to the ground to prevent the 

system overflows. The EEG system resolution prevents any system overflow and saturation 

due to high electrode offset voltage which helps further artifacts treatments and corrections. 

Each of EEG channels analog to digital converter sample at 24576 MHz. Meanwhile, a 64-

times oversampling generates an internal sampling rate of 38400 MHz. The system floating 

point oversamples and filters the collected data between 0 to 2400 Hz, e.g. frequency rate 

of 256 Hz yields to an oversampling rate of 9600 Hz. This property helps to improve the 

acquired signal to noise ratios. The high resolution of system is crucial for recording the 

evoked brain potentials when small amplitude’s changes should be identified.  

The g.USBamp includes a synchronization cable to interconnect with other devices, 

simultaneously. The amplifier system is capable of generating sinusoidal, rectangular, saw-

tooth or white-noise test signals with varying amplitude and frequencies. The EEG device 

detects offsets and gain values of the channels to internally correct newly generated 

artifacts. This property is beneficial for deriving the localized brain signal sources.  
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4.1.2.2 EEG sensor cap 

The electrodes’ gel should be used to keep resistance and transition impedance rate 

between the skin and electrodes less than 5 KΩ. Other part of the EEG device is the cap 

which has to be worn on to facilitate the electrodes placement (g.tec, 2013). Placing the 

EEG electrode at their predefined location according to the 10-20 system or other 

developed systems is crucial for recording signals with better quality. 10-20 EEG 

electrodes placement is shown in figure 24 and figure 1 (Elitzur A.C., 2010). 

 
Figure 24. 10-20 international electrodes placement (Elitzur A.C., 2010) 

The employed EEG device in this research study is g.GAMMAcap which, is presented 

in figure 25. This cap is configured with active or passive electrodes which are easily 

placed inside the cap based on 70 location electrode placement system. 
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Figure 25. The g.GAMMAcap (g.tec, 2013). 

4.1.2.3 EEG stimulation-box 

g.STIMbox (LED stimulation-box) is a stimulator with digital I/O which has 14 digital 

inputs and 16 digital outputs. The system supports USB 2. The stimulation-box I/O is 

connected by two 26 pin Sub-D connectors. Top of the box includes 8 digital I/O 

connectors which can be used by clinch connectors. The system power can be supplied by 

USB connector without any external power supplier. Figure 26 demonstrates the complete 

package of gSTIMbox and LED stimulators (g.tec, 2013). 
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Figure 26. The SSVEP stimulation-box (g.tec, 2013). 

4.2 Experimental Protocols 

This section addresses the experimental protocols to collect the data for single SSVEP 

test session and driving car-simulator experiments.  

First, two sets of data are applied to evaluate and verify the accuracy and ITR of 

introduced methods in chapter 3. The first set of data was provided by g.TEC CO. collected 

from visual cortex by 8 EEG channels. The second set of data was collected from 30 

healthy subjects aged between 18-65 years old at the CISR laboratory. This data was 

collected as preliminary test session (SSVEP experiment) before car driving-simulator 

experiments which will be explained later in this section. Both of data-sets were recorded 

from visual cortex by 8 EEG channels and the same experimental protocol. 

Second, three car driving simulator scenarios were developed to collect the drivers’ 

behaviors confronting near collision situations (3 near collision situations in each driving 

scenario). For the subjects who had never participated in a car driving-simulator test, a 

preliminary 8 minutes scenario was additionally designed. This scenario’s longitudinal 

distance or timing is based on previous studies (Soudbakhsh, 2011). These driving 
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scenarios are described later in this chapter. The subjects had valid US driving license and 

they were briefed with consent Institute Research board (IRB) form before taking the tests. 

The study was approved by IRB which is an independent committee established to review, 

control and approve the experiments that involve human subjects. 

• First driving scenario collects drivers’ normal behavior  

• Second scenario collects the drivers’ behaviors with a short LED warning before 

the near collision situation 

• Third scenario collects the drivers’ behavior with a longer period of LED warning 

before the near collision situations  

4.2.1 SSVEP Data Collection Experiments 

The purpose of this data collection experiment was to evaluate the SSVEP analysis 

methods explained in chapter 3. Two sets of data were collected by g.TEC CO. and CISR 

laboratories with a same test protocol. The test protocol is explained in the following 

paragraphs. 

Data was collected from 30 healthy subjects from 8 EEG electrodes with acquisition 

rate of 256 Hz. The electrode placement is pictured in figure 27 for evaluating the SSVEP 

response detections. Ground electrode was placed at electrode location called Fpz with a 

reference electrode over right earlobe. Electrode gel was used to keep the resistance level 

below 5 kΩ. 

Recorded data were band-passed from 0.5 to 30 Hz for removing the undesired artifacts 

(included in data acquisition software). Notch filter at 50 Hz was employed to diminish the 
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power line noises by the data acquisition system. Figure 28 represents a subject performing 

the SSVEP test while LED stimulation-box is activated. 

 

Figure 27. Electrode placement (Guger C., 2012) 

Test protocol was based on 4 LEDs flickering with different frequency rates. In each 

trial, user was asked to focus on one LED for 7-seconds which was followed by 3-seconds 

of no flickering LED (resting time). Test trial included focusing on 10, 11, 12 and 13 Hz 

frequencies, respectively. Then, this trial was repeated 5 times during a test (Guger C., 

2012). Test protocol and LED stimulation-box scheme are illustrated in figure 29. Subjects 

participated in one SSVEP test session before performing the car driving-simulator tests. 

Each SSVEP test session began after 10-seconds of delay (preparation time). 

The LED stimulation-box, which is presented in figure 28 and figure 29, has four LED 

lights. The LED which is positioned on top of the box was set to flicker at 10 Hz during the 
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SSVEP test sessions. Other LEDs from right to left were flickering at 11, 12 and 13 Hz, 

respectively. 

 

 

Figure 28. The LED stimulation-box 

 

Figure 29. The LED stimulation-box and trials’ schema 
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4.2.2 Car Simulator Driving scenarios 

The purpose of car-simulator driving experiments were to collect the drivers’ behavior 

and reactions while they were facing a near collision situations.  

The speed, braking pedal pressure, longitudinal distance and time were collected to 

evaluate the drivers’ behavior. Based on collected data, Time to Collisions (TTC) and 

braking (or reaction) distances of each driver was calculated (explained in the next 

chapter). Three sessions have been tested with drivers (subjects) wearing EEG sensors cap 

while driving. All sessions include three near collision situations in which subjects are 

faced with suddenly appearing obstacles. 

1. The first test scenario contained normative driving with the presented possible 

near collision scenario and without any LED stimulus as in-vehicle warning 

device (car, pedestrians and parked taxi). 

2. The second test scenario contained a similar scenario to the first session, but 

with a LED warning given 3-second before a possible crash with an appearing 

object (police car, truck and ambulance truck). 

3. The third scenario contained of suburban and urban areas and LED warning is 

given 5-seconds before a possible crash in a near collision situation. The 

obstacles are car, a truck and pedestrians. 

The subjects who participated in this study had valid US driving license and aged from 

18-65. All of the subjects were healthy and briefed by IRB consent form before taking the 

test. The subjects were allowed to participate in experiments only if they never had 

experienced nausea during their previous ground, aerial or maritime transportations. After 
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SSVEP and driving-simulator experiments, subjects were asked to fill a questionnaire for 

evaluating their experiments during the test. The questionnaire form is provided in 

appendix C. For Those subjects who never participated in a car driving-simulator study a 

preliminary scenario was designed. This scenario includes urban, residential, highway and 

rural areas to help the subjects to be more familiar with driving-simulator. The preliminary 

scenario was 37000 ft long or 500-seconds based on previous studies suggestions 

(Soudbakhsh, 2011). 

The first scenario was 15000 ft including rural and suburban areas. This scenario was 

planned to collect the normal drivers’ behavior confronting a near collision situations. This 

scenario had three obstacles which appeared on the road (in front of the subjects’ vehicle) 

2-seconds before the collision. The obstacles were a car appearing in front of the vehicle, 

pedestrians crossing the street, and an ambulance driving out of parking lot. Figure 30 

presents the first scenario obstacles. 

The second scenario was 15000 ft with almost the same nature as the first scenario. In 

this scenario, a 3-seconds LED warning was given to the drivers before each near collision 

situation. The subjects were not informed that warning system will be activated during their 

driving task. This short LED warning period was considered to detect the effect of LED 

stimulation-box activation on drivers’ brain signals. Moreover, LED warning was 

employed to evaluate the effect of warning LEDs on drivers’ behavior. Figure 31 presents 

the obstacles of this scenario. 
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Figure 30. The first scenario (normal driving) near collision situations 
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The third scenario was 31000 ft including suburban and urban areas. The LED warning 

system was activated 5-seconds before the near collision situations. The subjects were 

informed of the LED warning activation before each crash. This scenario was planned to 

measure the effect of an active SSVEP based BCI warning system presence on drivers’ 

behavior and brain signals confronting the near collision situations. This scenario had three 

obstacles which are presented in figure 32. 

The longer period of LED warning was considered to determine whether a SSVEP 

based BCI in-vehicle assistive system could be helpful or distractive comparing to the 

normal situation. To prevent any biased data collection, the second and third scenarios were 

driven randomly. The random performance of the warning scenarios moderates the 

subjects’ learning processes which could be resulted from recurrence of LED warning 

activations. The results of the driving simulator experiments are described in section  5.2 of 

the next chapter. 
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Figure 31. The second scenario (short LED warning) near collision situations 
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Figure 32. The third scenario (long LED warning) near collision situations 
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Chapter 5: Results and Discussions 

The first part of this chapter, as discussed, will reveal the results of analyses algorithms 

described in chapter 3. The SSVEP response detection algorithms’ accuracy rate and their 

corresponding Information Transfer Rate (ITR) are calculated. All of these analyses are 

computed based on overlapping 224 samples in each time-window of 256 samples (256 Hz 

sampling rate), to acquire an outcome every 1/16 of second. The accuracy rate is the 

number of correct detected subjects’ SSVEP responses (in each time-window) during a test 

session. The ITR is a factor for measuring the system capability of real-time performances. 

This factor formula is described later in this chapter. Then, 4 successful methods 

evaluations’ results are presented. These methods are, CCA, CCA with statistical 

significant tests’ evaluation, adaptive Kalman filter and adaptive Gauss-Newton filter. The 

SSVEP response detections’ evaluation results of the described methods are included in 

different sections as listed below.  

• Analysis methods evaluation with g.TEC data-sets (section  5.1). 

• Analysis methods evaluation with collected data-sets in CISR (section  5.2). 

To evaluate these methods, collected brain signals are recorded via 8 EEG channels 

from visual cortex (figure 27) during a SSVEP test session as described in chapter 4. 

In the second part, time to collisions and reaction distances before an emergency 

situation are considered as drivers’ performances evaluation factor. Meanwhile, it shows 

the distraction or vigilance level due to the LED stimulation-box activation [ (Lin C. T., 

2005), (Lin C. T., 2005), (Rimini-Doering M., 2001), (Haufe S., 2011)]. 
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The car driving-simulator scenarios’ collect the drivers’ performances and brain signals 

in three scenarios which are listed below (details are described in chapter 4) (section  5.2). 

• Scenario without a LED stimuli collision warning. 

• Scenario with a LED stimuli collision warning with a short obstacle detection 

period of 3-seconds. 

• Scenario with a LED stimuli collision warning with a longer obstacle detection 

period of 5-seconds. 

Henceforth, the SSVEP stimulation-box activation as a warning system during the 

driving task will be evaluated. The reaction distance and time to collision of each driver in 

scenarios with short and long warning periods are compared with their performance during 

the normal scenario. The short warning period evaluates the SSVEP based warning stimuli 

as a driving assistant system. The longer period of LED stimuli determines the effect of 

long-term presence of an active SSVEP based BCI as an in-vehicle device. 

The last part is an attempt to correlate the brain signals in normal and short warning 

scenarios with LED stimulus signal (10 Hz flickering frequency as a warning signal). This 

part attempts to detect any underlying meaningful correlation between subjects’ brains 

activities and LED signal before a near collision situation for future in-vehicle systems. 

5.1 SSVEP Response Detection Results 

This part of thesis will present the SSVEP response detection analysis methods’ results. 

Moreover, it attempts to evaluate each method capability for employing in an online BCI 

system by calculating the Information Transfer Rate (ITR). ITR (Bits/Trial) presents the 
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information bits which are obtained in each test trial. Therefore this feature introduces the 

capacity of analysis algorithm for providing information during a trial. In each trial, certain 

amount of information is required for reliable online BCI systems performance (Obermaier 

B., 2001). This part of thesis presents the analysis results of the Canonical Correlation 

Analysis, Adaptive Kalman Filter method and Adaptive Robust Gauss–Newton Algorithms. 

These methods resulted in accurate and reliable SSVEP brain signals response detections. 

The results of these methods evaluations obtained from, first g.TEC data and second our 

human subjects’ study are presented. 

5.1.1 SSVEP Analysis Results of g.TEC Data 

The analyses methods are evaluated with data provided (4 subject’s test sessions) by 

g.TEC medical and biomedical company which has been used for their SSVEP response 

detection analysis. The average accuracy rates and ITRs for each method and all of 4 

subjects are compared with each other. Meanwhile their level of accuracy and ITR for 

online performances is discussed. 

The major challenge of SSVEP BCIs is to find the frequency components of brain 

signals and extract proper information in order to later classify and detect user commands. 

The introduced methods in this thesis were first employed to analyze provided data by 

g.TEC (as an external data source) since different data analysis methods (modified by 

g.TEC research group) reached to certain level of accuracy with these data-sets (Guger C., 

2012).  
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The SSVEP test sessions consisted of 4 LEDs flickering with 10, 11, 12 and 13 Hz 

frequencies. LEDs were flickering for 7 seconds in a cycle and this cycle was repeated 5 

times for each subject. The data sampling rate was 256 Hz, meaning that each 1-second 

time-window had 256 samples. By overlapping 224 samples in time-windows, the SSVEP 

responses will be detected every 1/16 of second. The accuracy of SSVEP response 

detections for the test session and different subjects are provided. The accuracy rate 

presents the average percentage of the correct user intention detection in each trial. The 

ITR (Bits/Trial) is obtained from the following (Eq. 80) (Vasquez P. M., 2008). 

2 2 2
1( / ) log log (1 )log ( )

1
PITR Bits Trial N P P P

N
−

= + + −
−

 (Eq. 80) 

Where, N is the number of LED stimuli signals and P is the system average accuracy 

rate. This formula uses the average accuracy rate of each subject’s SSVEP test session to 

calculate the ITR of each subject/test. Then, based on this equation, higher system average 

accuracy increases the ITR (second and third terms of the equation). Moreover, the higher 

number of SSVEP stimuli increases the ITR based on the first and third terms of the 

equation (Obermaier B., 2001).  

Figure 33 and figure 34 show the analysis results of 4 subjects’ SSVEP test sessions 

obtained from introduced algorithms in chapter 3. Figure 33 shows the accuracy rate in 

percentage and figure 34 shows the ITR in bits/trial. 
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Figure 33. Average accuracy rate for subjects/algorithms 

 

Figure 34. ITR for aubjects/algorithms 
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As it can be seen in these figures, the average accuracy rates are adequately ranged 

between 60 to 90 %. Subject 3 shows poor performance with SSVEP BCI which can be 

caused by distraction or subject’s brain physiological structure, which generates 

electromagnetic fields that are not detectable by EEG. Usually, for subjects who use the 

BCI systems for the first time their focus on LEDs are not quite enough to provoke 

detectable visual potentials for EEG. The ITR for all subjects except subject 3 are higher 

than the range of 0.6 to 0.8 (Bits/Trial). This represents feasible SSVEP response detection 

algorithms for online BCI systems (Obermaier B., 2001). 

5.1.2 SSVEP Response Detection Analysis 

This section provides the results of the SSVEP response data collected for 30 subjects 

and the performance of the four selected analysis methods. One of the major challenges of 

SSVEP BCIs is to find frequency components of brain signals and extract proper 

information in order to later classify and detect user commands. Canonical correlation 

analysis has been offered for analyzing SSVEPs by (Bin G., 2009) and later was evaluated 

by many different research groups to obtain its level of average accuracy for different 

tests/subjects [ (Bin G., 2009), (Lin Z., 2006), (Bin G., 2009)].  

Despite the many advantages of CCA method, such as less computational time and 

higher accuracy with efficient ITR (as indicated in early papers’ results), there is a 

prevalent issue of decreasing average accuracy with fewer number of samples. The smaller 

time-windows that are required for real-time processing decrease the CCA accuracy rate. 

The other important CCA issue which may be considered for real-time processing 
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algorithms is that it configures an open loop control system where there is no regulation for 

error rate. Recent attempts for developing online BCI systems resulted in introducing 

complex signal filtering, closed loop control systems, machine learning methods and 

different transforms for detecting the user intention without training sessions and 

acceptable accuracy rate [ (Friman O., 2007), (Chang H. C., 2010), (Lee P. L., 2011), 

(Zhao L., 2010), (Kimura Y., 2013), (Wang H., 2010)]. As it has been discussed in chapter 

3, adaptive and robust filters have the advantage of controlling the error boundaries with 

different cost functions and criteria. Our modified adaptive algorithms are limited to time-

windows with specific length of data samples to estimate the PSD of each LED. However, 

this is more dominant for CCA method since with smaller time-windows the accuracy of 

estimating correlation factors decreases and system deficiency increases. Nevertheless, 

overlapping data samples helps to create larger time-windows for CCA and PSD 

estimations. The preliminary results obtained from g.TEC data confirm independence of 

accuracy from overlapping the samples in time-windows. Hence, overlapping samples in a 

time-window improves the system capability for generating outputs every few hundreds of 

milliseconds, e.g. in our test, the model finds the user command, every 62.5 milliseconds. 

Figures 35 and 36 show the obtained correlation factors for subject 22 test session via 

CCA and Modified CCA-Evaluation methods, respectively (overlapped time-windows). 

Each LED and observed brain signals result in a correlation signal. In this research, 

subjects are tested with 4 flickering LEDs with frequency rates of 10, 11, 12 and 13 Hz. 

The LEDs were flickering for 7-seconds and this cycle was repeated 5 times during a test 

session. These two figures clearly present the increase in brain signals’ correlations with 
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flickering LED signals. As it can be seen, correlation increased for the 10, 11, 12 and 13 Hz 

LEDs, respectively. This pattern repeated 5 times during a test session. Comparing the 

correlation factors of different LEDs at each time step and selecting the maximum 

correlation value detects the user intention. 

Figures 37 and 38 present the estimated original brain source signals and estimated 

noise signals recorded from subject 22 for the first second of his test session (10 Hz LED). 

These two figures demonstrate the obtained results from adaptive Kalman filter algorithm. 

These two figures are the calculated brain source and noise signals for subject 22 who 

satisfactorily performed during the SSVEP test session. Moreover, Figure 39 and figure 40 

present the obtained brain source and noise signals from subject 7 for the first second of the 

SSVEP test session. The subject 7 had a poor performance during SSVEP test session and 

acquired system accuracy is correspondingly low. These two figures are provided to 

demonstrate that obtained brain source and noise signals from the filtering algorithms show 

no difference between the subjects with detectable (DSR) and non-detectable SSVEP 

responses (NSR). Hence, as mentioned in chapter 3, SSVEP response detection requires 

additional steps to calculate the PSD and accordingly SNR of the brain source and noise 

signals. The user intention detections via adaptive filters depend on maximum obtained 

SNR for different LED stimuli. 
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Figure 35. Correlation factors obtained via modified CCA-evaluation method 
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Figure 36. Correlation factors obtained via CCA method 
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Figure 37. Estimated brain source signals via adaptive Kalman filter recorded from 

subject 22 

These two figures consisted of 6 signal channels of sine and cosine elements of brain 

source signals and their corresponding noises for 3 frequency harmonics (section  3.3). 
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Figure 38. Estimated noise signals via adaptive Kalman filter recorded from subject 22 
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Figure 39. Estimated brain source signals via adaptive Kalman filter recorded from 
subject 7 
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Figure 40. Estimated noise signals via adaptive Kalman filter recorded from subject 7 

Figures 41 and 42 demonstrate the estimated brain source signals and corresponding 

noise signals for subject 22 during the same time-window for 10 Hz LED using adaptive 

robust Gauss-Newton algorithm. These figures also consisted of 6 channels based on LED 
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stimulus signal. Stimulus signal includes 6 channels of sine and cosine elements of LED 

signal and 3 corresponding harmonics (section  3.2.2.1). 

 

Figure 41. Estimated brain source signals via adaptive robust Gauss-Newton filter 

recorded from subject 22 
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Figure 42. Estimated noise signals via adaptive robust Gauss-Newton filter recorded from 

subject 22 

Figures 43 and 44 present the obtained brain source and noise signals from subject 7 

via Gauss-Newton filter. The figures presented for subject 22 (with detectable SSVEP 
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responses) and subject 7 (with non-detectable SSVEP responses) show no noticeable 

difference between obtained brain source and noise signals. Hence, additional SSVEP 

response detection step is needed. 

 

Figure 43. Estimated brain source signals via adaptive robust Gauss-Newton filter 
recorded from subject 7 
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Figure 44. Estimated noise signals via adaptive robust Gauss-Newton filter recorded from 
subject 7 

After estimating the brain source signals and noise signals for each LED frequency, the 

SNR value of estimated brain source signals for all LEDs are obtained according to chapter 

3 methods. Finally, the maximum SNR values between different LEDs indicate the selected 



www.manaraa.com

 

117 
 

LED by subject. Figure 45 shows the calculated average accuracy rate during the SSVEP 

test session for subjects via different proposed methods in this thesis. The subjects who 

reached the accuracy rate of 50-60 % have a satisfactory BCI performance. However, for 

the BCI systems with real-time performance, accuracy range of 60-80 % is anticipated 

according to the earlier studies [(Elitzur A.C., 2010), (Blankertz B., 2010), (Guger C., 

2012), (Obermaier B., 2001)]. The results of analysis models in figure 45 confirm the 

models capability of detecting SSVEP responses. In our research, some subjects couldn’t 

perform satisfactorily during SSVEP test and reached the lower accuracy rate. As 

suggested by earlier studies, this mostly happens when the subjects never participated in 

SSVEP test before. 
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Figure 45. Average accuracy rate for subjects/algorithm 
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To compare all of the proposed methods with each other more precisely, subjects’ 

accuracy rates quartiles are calculated (box-plot). Each quartile presents the range of 

accuracy in which 25 % of the study’s population distributed. Figure 46 presents the Box-

Plot of all methods analysis results. In this figure, the worst and best accuracies and the 

distribution of subjects’ performances for each method are demonstrated in quartiles. This 

figure shows that all of the methods introduced in this thesis are comparable which means 

their performance as an online SSVEP based BCI is almost similar. Figure 33 also shows 

that the SSVEP response detections obtained from g.TEC data are comparable. 

 

Figure 46. The box-plot of all models analysis results 
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Figure 47 is used to better indicate how the data analysis results of proposed methods 

are distributed in 25 percentiles. The important part of figure 46 and figure 47 is the middle 

50 percentiles that present the average performance of subjects with SSVEP BCIs. 

 

Figure 47. The percentile distribution-plot of all models analysis results 

Figure 48 shows subjects’ ITRs for the four selected analysis models. In this figure, the 

amounts of ITR for different subjects are comparable with their corresponding accuracy 

rate in figure 45. In section  5.1.1, it’s explained that according to (Eq. 80), the amount of 

ITR is dependent on subjects’ accuracy rate. 
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Figure 48. subjects’ ITR/algorithm 
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The ITR for different models are also calculated from (Eq. 80) to compare the 

capability of transferring bits of information during the test session. Figure 49 and figure 50 

show the same data distribution aspect as was explained for accuracy rate quartiles and 

percentiles, respectively. A Satisfactory ITR rate for online performances is considered 

higher than 0.6 per trial. The ITR range of more than 0.8-1 bits/trial satisfies the SSVEP 

based BCI real-time performances (Obermaier B., 2001). 

 

Figure 49. The box-plot of all models ITR results 
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Based on accuracy results almost half of the subjects performed satisfactorily during 

the SSVEP test session since the average accuracy rate changes between 40 to 80 %. This 

was observed even though none of the subjects had ever participated in a SSVEP test 

session. This is presented in figure 46 and figure 47 where middle 50 % of the subjects’ 

analysis results are approximately similar for different methods. However, ITR results 

obtained for 50 % of the subjects with NSRs are not satisfactory for online BCI purposes, 

regardless of analysis model. Referring to (Eq. 80) ITR is affected by both the accuracy 

rate and total number of SSVEP triggers. 

 

Figure 50. The percentile distribution-plot of all models ITR results 
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The first and second 25 % of subjects’ ITRs (dissatisfactory ITRs from subjects with 

NSR) con density of distribution between 0-0.3 bits/trials can be observed in figure 50. 

This is an indication for why the ITRs are unacceptable for employing in online BCIs. 

Then, as shown in figure 49 the higher 50 % of the subjects’ ITR is ranged between 0.4-

1.4. This can be considered as a good performance and represents the adequacy of analysis 

models for real-time BCI systems, especially for ITRs higher than 0.8.  

The four selected analysis methods introduced in chapter 3 are evaluated in this section. 

The analysis results were described in two sections. First section was based on the data 

provided by g.TEC. The results of the g.TEC data show an acceptable accuracy rate and 

ITR for real-time BCI systems. The high level of accuracy which is reached by g.TEC data 

verifies the validity of these methods’ assumptions for filtering the SSVEP signals. The 

accuracy rate for all of the methods are comparable and within the range of 70-90 %. This 

shows that these methods had no privilege over each other. However, the adaptive filtering 

methods are closed loop systems which decrease and stabilize the system error at each time 

step. The second data-sets were collected from subjects at CISR. The SSVEP test protocol 

in which these subjects participated was the same as g.TEC SSVEP experiments. The 

subjects who participated in CISR SSVEP test session were never performed a SSVEP 

based BCI system. This affected their focus on LED stimuli and also affected the acquired 

analysis results. However, many subjects’ analysis results reached a satisfactory accuracy 

rate of more than 50 %. 
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5.2 Car Driving-Simulator Scenarios’ Results 

In this thesis, three driving scenarios were designed for testing volunteer subjects. In 

each scenario, the drivers’ time to collision (TTC) and reaction distances (RD) were 

measured to determine the drivers’ reaction to a near collision situation. These two factors 

are presented in (Eq. 81) and (Eq. 82). 

c rTTC T T= −  (Eq. 81) 

Where, Tc and Tr are the time of crash and time of first driver’s reaction, respectively. 

In this thesis, driver’s reaction is detected either with braking pedal pressure or steering 

wheel angel. The steering wheel angel of more than 1 rad/sec and braking pedal pressure of 

more than 0 is considered as driver’s reaction based on previous studies (Soudbakhsh, 

2011). The braking pedal pressure is measured with the range of 0 (no pedal pressure) to 

100 (full pedal pressure). The time of first driver’s reaction is the time before the accident 

when one of the above conditions is met. The reaction distance is calculated from (Eq. 82). 

c rRD L L= −  (Eq. 82) 

Where, Lc and Lr are the longitudinal distances of the crash and first driver’s reaction, 

respectively. 

First scenario was based on driving on rural and suburban area which included three 

near collision events. In this scenario, drivers’ reaction distances and Time to Collision 

(TTC) were recorded to measure their normal performances confronting a near collision 

situation. The short and long (2nd and 3rd scenarios) warning period scenarios’ orders were 
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changing randomly to prevent any biased data collection. As mentioned before, during the 

short warning scenario drivers were not informed that LEDs will warn them just before 

emergency situation. Before the long warning scenario, they were informed that LEDs will 

be activated like a warning system before an emergency situation. The logic behind this 

driving scenario is to show how drivers will perform in presence of an active SSVEP 

stimulation LEDs warning system (scenario 3). The second scenario is designed to measure  

how a SSVEP based BCI short warning period will affect drivers’ performances in case 

that emergency condition is detected just before it happens. The other important aspect of 

short warning period is that nowadays’ real sensors have a short detection range. The 

drivers’ brain signals correlation during the normal and short warning scenarios are 

compared with 10 Hz LED signal (the activated frequency during warning sessions) to 

determine the subjects’ brain activities and SSVEP response detection.  

Figure 51 shows the box-plot of all 30 subjects/scenarios. The middle 50 % of the 

subjects show a better performance in short warning scenario with respect to their normal 

reaction distances. Although, the middle 50 % of subjects in long warning scenario have a 

wider range of reaction distances, they mostly have longer (improved) reaction distances. 

The results are even far better than their normal performances if we consider the top 25 % 

of the drivers. Generally, figure 51 shows that the drivers’ performances during the long 

warning and short warning scenarios satisfactorily improve with respect to the normal 

driving. It can be seen that some subjects performed far better during the short warning 

scenario which could have happened because of learning process after they participated in 



www.manaraa.com

 

127 
 

the long warning scenario. The learning process also helped the subjects who participated 

in the long warning scenario before the short warning scenario. 

 

Figure 51. box plot for scenarios/subjects 

Figure 52 illustrates how the collected reaction distances are distributed in each test 

session. This figure is not meant to compare data distribution of scenarios with each other. 

Nonetheless, its purpose is to better demonstrate the diversity of subjects’ performances in 

each scenario. It determines the difference between worst and best subjects’ performances. 

For example, figure 52 shows that in 1st and 2nd scenarios 75 % of the subjects almost 

performed similarly and their reaction distances’ range differ from 52 to 70 ft, respectively. 



www.manaraa.com

 

128 
 

Figure 51 and figure 52 together interpret collected reaction distances by comparing the 

data between different scenarios and determining their distribution in one scenario, 

respectively. The same logic is used to interpret the drivers’ performances by collecting 

TTC. The final results are presented in figure 53 and figure 54, respectively. 

 

Figure 52. Reaction distances’ data distributions 
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Figure 53. TTC box plot for subjects/scenarios 

 

Figure 54. TTC data distribution 
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Interestingly, the same conclusion resulted from collecting drivers’ TTC. Their TTC for 

short warning scenario is more than other scenarios which means that they reacted faster to 

near collision situation with respect to other scenarios. It’s worth mentioning that drivers 

were given 2-seconds to react before an accident happened during the normal driving 

scenario. In short warning scenario, this time increased to 3 seconds by considering the 

LEDs activation and for long-warning scenario, this period was 5 seconds. The 5 seconds 

LED warning activation in the long warning scenario was designed to evaluate the drivers’ 

performances in the presence of an active SSVEP based BCI system. The 3 seconds of 

warning (even without informing the subjects of LEDs’ activation) helped them to react 

better. As mentioned before, the effect of learning process for subjects should be 

considered. The subjects with worst performances may be the ones who become distracted 

or failed to fully focus on the warnings during the scenarios. Figure 55 demonstrates all of 

the subjects’ calculated reaction distances. This figure shows that for most of the subjects, 

reaction distances are higher in the warning scenarios. This means that the LED warning 

was helping the subjects to react faster. It’s possible that for those subjects who have less 

reaction distances in warning scenarios, the LED warning causes distraction. However, 

another aspect that should be considered for drivers with a very short reaction distances in 

long warning scenario is that they started to decrease their speed long before the emergency 

situation and therefore they needed less stopping distance. In many test sessions, warning 

systems prevented the collision which is presented in table 1, table 2 and table 3 for the 1st, 

2nd and 3rd test sessions, respectively. In the following tables Y means that subjects failed to 
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react fast enough and crash happened (rare-end collision) and N means that no crash 

happened. 

 

Figure 55. Subjects/scenario reaction distances (ft) 
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Table 1. Subjects’ crashes during normal driving scenario 
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Table 2. Subjects’ crashes during short warning driving scenario 
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Table 3. Subjects’ crashes during short warning driving scenario 
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As it can be observed from table 2 and table 3, the total percentage of crashes in short 

and long warning scenarios adequately decreased with respect to the normal driving 

scenario. This shows that without considering worst subject performances, in general, LED 

warning flashes are helpful for improving drivers’ vigilance in near collision situations and 

they don’t have distractive effect. In this section, tables 1 to 3 demonstrate a decrease in the 

total number of crashes. Meanwhile, figure 51 and 53 show higher TTC and longer RD in 

warning scenarios. In these box-plots the results are presented in quartiles which show the 

subjects’ reactions distribution. Statistical significance tests are needed to compare the 

difference between the car-simulator scenarios. The Analysis of Variance (ANOVA) is 

used to test the difference between each scenario’s mean across groups. ANOVA evaluates 

the null hypothesis of no difference across groups by comparing the different estimates of 

the groups’ variances. This method considers F-distribution in each group and compares 

the difference between variances by calculating the within and across groups sum of 

squares. The null hypothesis will be rejected as the value of F-test increases and wilks’s 

ratio decreases below 0.05 (Lattin J. M., 2003). Table 4 shows the obtained RD mean and 

standard deviation for each scenario while table 5 presents the ANOVA test results. 

As it can be seen in these tables, standard deviation is different among groups and the 

ANOVA test shows the F-value of 461.7 (Intercept) and wilks’s ratio (sig.) of less than 

0.0001. This result illustrates a very significant change between car-simulator scenarios. 

ANOVA test and the quartiles box-plots results show that drivers’ behaviors significantly 

improved in warning scenarios comparing to their normal driving behavior. 
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Table 4. Scenarios' mean and standard deviations 

 

Table 5. ANOVA test results 

 

The partial eta squared (η2) value for test IDs (table 5) show that car-simulator 

experiments’ participants (30 subjects) represent 11 % of total drivers’ behaviors variation. 

5.3 Brain Signals Correlation Detection 

In this part, the underlying correlation between the brain signals and the activated LED 

signal (10 Hz frequency) is evaluated. These signals are collected during normal driving 

scenario and short warning scenarios. The purpose is to find out and determine the 

existence of a noticeable or detectable correlation between the warning LED signal and the 
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driver’s brain signals (SSVEP). Likewise, brain signals collected from normal driving 

session with no LED activation are expected to show less increase in correlation factors’ 

amplitudes. The evaluated brain signals are collected from samples of 3 seconds before and 

1 second after the near collision situation. The correlation between the brain signals 

collected from scenario 1 (with no LED activation) and scenario 2 (with short LED 

warning period) is obtained from CCA analysis method. The data acquisition system 

employed 0.5-30 Hz band-pass filter and 50 Hz notch filter to record the signals. The 

obtained correlation factors and SNRs are compared to detect the noticeable differences 

between the recorded brain signals’ activities during these two scenarios. The procedure to 

calculate the correlation factors and SNRs is described as follows: 

• Collecting the recorded brain signals from samples of 3 seconds before and 1 

second after each crash/scenario. 

• Calculating the correlation factors and canonical variants of the recorded brain 

signals (for both scenarios) and LED warning signal via CCA method (chapter 

3, section  3.2.1). 

• Comparing the obtained canonical factors of the first and second scenarios with 

each other to detect the differences in correlation patterns. 

• Calculating the SNRs of the obtained canonical variants based on chapter 3, 

section  3.3.1.3). 

• Comparing the obtained SNRs of the first and second scenarios with each other 

to detect the underlying correlations variants’ differences. 
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The recorded brain signals (recorded from each subject) and LED signals’ correlation 

factors are obtained from (Eq. 12) for each scenario/crash. Figure 56 and figure 57 show 

the obtained correlation factors of subject 22 driving experiments. These figures present the 

correlation factors obtained for the first near collision situation of the first and second 

scenarios, respectively. The subject 22 SSVEP signals were detectable (DSR). The brain 

signals were collected with 256 Hz sampling rate and time-windows were overlapped every 

0.0625 second. Therefore, for a 4-second time-window (3-seconds before and 1 second 

after each crash), 65 correlation factors were obtained. For each subject, near collision 

situation happens on time step 48. These figures show increases in correlation factors 

amplitudes before each crash. However, this pattern (increases in correlation factors’ 

amplitudes) occurs for both of the normal and short warning scenarios. This means that 

subject brains’ activities before each near collision situation was not just affected by LED 

warning signal. The correlation factors’ amplitudes are higher for the second scenario (with 

warning LED). It’s worth mentioning, that the correlation factor of less than 0.5 shows 

statistically insignificant correlation (Lattin J. M., 2003).  
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Figure 56. Correlation factors obtained from subject 22 driving experiment during the 
first scenario and first near collision situation 
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Figure 57. Correlation factors obtained from subject 22 driving experiment during the 
second scenario and first near collision situation 

Figure 58 and figure 59 show the obtained correlation factors of the first near 

collision situation for subject 7 driving experiments (this subject had NSR). These figures 

also show increase in correlation factors’ amplitudes before the near collision situation. 
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The obtained correlation factors’ amplitudes are higher for subjects’ second scenarios’ 

compared to the first scenarios (before near collision situations). 

 

Figure 58. Correlation factors obtained from subject 7 driving experiment during the first 
scenario and first near collision situation 
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Figure 59. Correlation factors obtained from subject 7 driving experiment during the 
second scenario and first near collision situation 

These two subjects canonical factors’ patterns for the 2nd and 3rd near collision 

situations are presented in appendix B; along with, 6 other subjects’ canonical factors for 

the first near collision situations of the 1st and 2nd scenarios. 
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The canonical variants obtained from recorded brain signals and LED warning signal 

via CCA was used to calculate SNRs. The SNR for each near collision situation and 

subject/scenario is obtained according to (Eq. 42). This equation calculates the SNR by 

averaging the ratio of the source signals’ PSD from (Eq. 43) and noise signals’ variance 

from (Eq. 44). The obtained canonical variants’ matrices from the recorded brain signals 

during the normal and short warning scenarios calculated from (Eq. 12) to (Eq. 16) are 

considered as source signals. The LED signal is considered as the noise signal. Hence, the 

ratio of estimated canonical variants’ powers and LED signal variance are comparable. 

This helps to compare the brain activities’ patterns (SNRs) in both scenarios. Figure 60 

presents the obtained SNRs in 4-seconds time-window of the first near collision situation 

during the subject 22 driving-simulator experiments. Figure 61 similarly shows the 

obtained SNRs from the first near collision situation of the subject 7 driving simulator 

experiments. The subject 22 had DSR and subject 7 had NSR. These figures show the 

detectable SNR peaks before near collision situation for both subjects. It’s noticeable that 

SNR peaks’ occurrences before the near collision situations are not completely affected by 

subjects’ performances or LED warning activations. 

Figures 56 to 61 show the increase in the level of drivers’ brain activities (correlation 

factors and SNRs) before the near collision situations. This means that the LED warning 

effect on brain signals was not drastic. In other words, the major factor which affected the 

subjects’ brain activities was confronting an emergency situation. The near collision 

situations in each scenario caused increases in subjects’ motor and sensory motor neurons 

firing rates. The increase in neurons’ firing rate appeared as SNR peaks and canonical 
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correlation factor amplitudes’ increases. Another factor which probably affected the 

SSVEP response detections is the drivers’ full attention on activated LED warnings. The 

LED stimulation-box was placed on steering wheel as presented in figure 22.  

 

Figure 60. The obtained SNR from the first near collision situation of the subject 22 
driving-simulator experiments 

The subjects were asked to focus on their driving task during the scenario. Hence, they 

might not had focused or looked at the LED stimulation-box. Thus, the SSVEP response 



www.manaraa.com

 

145 
 

(from visual cortex) patterns (the obtained correlation factors and SNRs) are affected by the 

brain activities in different cortices.  

 

Figure 61. The obtained SNR from the first near collision situation of the subject 22 
driving-simulator experiments 

However, in this research the final conclusion shouldn’t be based on these results 

because of some drawbacks during the data collections. One major drawback of the 

experiments is that the EEG recordings and SSVEP stimuli were not internally synched 
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with car driving-simulator data collector. Although both systems were set to collect 

samples with 256 Hz rate, but during the analysis procedure data samples from EEG 

recordings and car driving-simulator were not coinciding with each other. For instance, in 

some cases, data matrices which were collected from EEG and car-simulator did not have 

the same number of samples (number of arrays in matrices’ rows indicating the total 

number of collected samples were not equal). 

Another major issue of this analysis is caused by corrupted brain signals with artifacts 

from driving task, limb movements, and measurement noises. Therefore, it should be 

considered that any conclusion on this matter for determining the SSVEP responses’ 

patterns lay on future and more reliable analysis procedures. 
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Chapter 6: Conclusions and Future Developments 

The research was based on first modifying and modeling analysis algorithms which are 

independent of training sessions with capability of being employed in future online BCI 

assistive devices (chapter 3). These methods are evaluated with two data-sets. First data-set 

was provided by g.TEC which was recorded by 8 EEG channels from visual cortex (figure 

27). The second data-set was recorded from 30 healthy subjects aged between 18-65 years 

old at CISR (chapter 4, section  4.2.1). The analysis methods’ evaluation results are 

presented in chapter 5, section  5.1. The analysis methods are evaluated by average 

accuracy and ITR as different factors as described in chapter 3 and section  5.1. The 

outcomes of single SSVEP test sessions which were held before driving scenarios are 

presented in figure 45. Despite of some subjects’ poor performances, many participants 

reached 50-60 % accuracy rate and ITR of more than 0.6-0.8 bits/trial. This shows 

promising analysis algorithms for detecting the SSVEP brain signals of subjects who never 

used a BCI system (subjects were never participated in SSVEP experiments). The analysis 

methods’ evaluation results from g.TEC data-sets show reliability of the introduced 

methods for employing in online BCIs (subjects were participated in other BCI tests before 

collecting the g.TEC SSVEP data-sets). 

The second purpose was to evaluate drivers’ behaviors in presence of SSVEP warning 

system and to detect the SSVEP responses’ patterns (described in chapter 5, sections  5.2 

and  5.3). Three different driving scenarios were designed to collect the driving-simulator’s 

data as described in chapter 4, section  4.2.2. The TTC and RD of each driver were 
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considered (refer to (Eq. 81) and (Eq. 82)) as factors for evaluating the drivers’ behaviors. 

The obtained results show that activating a LED warning system before each near collision 

situation improves the drivers’ reactions. The long warning scenario was designed to 

evaluate the effect of long-term presence of activated SSVEP stimulus on drivers’ 

behavior. The final results as presented in table 3 and table 2 demonstrate the decrease in 

total number of crashes for each subject. 

Among all of this research purposes, the later was uniquely studied for future online in-

vehicle assistant systems. It determined whether we are capable of detecting brain signals 

patterns’ before emergency situations. This can be helpful in cases where activating a BCI 

system saves critical time needed for drivers to react and prevent crashes. However current 

results are not completely support the capability of claiming that brain signals activities and 

SSVEP patterns are detected satisfactorily (near 100 %) as an in-vehicle assistive system. 

The higher TTC and longer reaction distances are observed in warning scenarios (figure 

51 and figure 53). However, the reaction distances’ minimum value in figure 51 for long 

warning scenario is less than normal driving scenario. This shows that some drivers were 

probably distracted by long duration of flickering LED stimuli and partially lost their 

attention. Nevertheless, during the car driving-simulator test sessions many drivers learned 

that long warning stimuli indicate an upcoming emergency situation. So, they decreased 

their speed long before (within 5-seconds of warning) near collision situation and their 

recorded reaction distances and TTCs are less than their normal behavior (figure 53). Since 

the drivers never had enough time to decrease their speed during the short warning 

scenario, this conclusion is not completely valid for the short warning scenario. These two 
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conclusions interpret both figure 51 and figure 53 and demonstrate that having shorter 

reaction distances and TTCs in long warning scenario is not necessarily caused by drivers’ 

distraction.  

6.1 Future Research 

The purpose of this research was to detect SSVEP responses with newly modified 

analysis algorithms. These algorithms are designed with capability of being employed in 

real-time performances without previous training sessions. Meanwhile, the results which 

are presented in the last chapter still show that analysis algorithms should be improved for 

real-time and emergency situations. Likewise, results of fast SSVEP response detection 

show the necessity for better and more complicated algorithms for determining the visual 

signals’ patterns and detecting the brain activities. 

Regardless of far ahead achievements which are still necessary for employing a SSVEP 

based BCI in vehicles, outcomes of this research show that SSVEP LED stimuli is helpful. 

The drivers’ performances are improved as measured by reaction distances and TTC in 

both short and long warning scenarios. The analysis algorithms detected the users’ 

intentions on LED stimuli satisfactorily in many cases. 

This study experiments and data collection flaws can be improved in the future 

research. These drawbacks and suggestions for future experiments are listed below: 

• LED stimulation-box location was set on steering wheel. The drivers’ attention 

on warning LEDs decreased because of the location and resulted on less 

accurate SSVEP response detections. For future studies, the LED stimulation-
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box should be placed in a suitable location which can be seen completely by the 

drivers. 

• The subjects’ age and gender was not considered prior to the experiments. 

Hence, the effect of these two factors was not evaluated on drivers’ behaviors 

during the car-simulator test sessions. 

• The obstacles were not changing randomly during the different scenarios and 

test sessions. This issue increased the learning process effect on drivers’ 

behaviors which should be resolved for the future studies. 

• The data collection devices, car-simulator and EEG, collected the data with 256 

Hz sampling rate. However, the car-simulator network was not internally 

synched with the EEG device. This issue caused an unsynchronized data 

collection in which both devices’ data samples were not coincided. In future 

research, this problem should be resolved by internally synchronizing the data 

collection devices. 

• The SSVEP response detections algorithms show satisfactory accuracy rates 

and ITRs. However, the obtained accuracy and ITR results can be improved by 

more elaborate processing algorithms. 
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Appendix A 

Data collection and data splitter Matlab code: 

Removing outlier digits ±100 µV, (brain signals from evoked potentials have the range of 
±70 µV 
function X=replace(x,k) 
%% this replacement function is just being made to remove the EEG 
channels recorded the sensory data if it's needed and to replace the 
numbers in the last row which are showing the 
% SSVEP LED stimulator signal performances to just 0 and 1 values for 
% performing or not performing status......................k=0 means no 
change for the sensory channels,k=1 means remove the sensory channels   
%% this part is just replacing 
  
[n,m]=size(x); 
  
for j=1:m 
    if x(n,j)==0 
        x(n,j)=0; 
    else 
        x(n,j)=1; 
    end 
end 
if k==0 
    X=x; 
elseif k==1 
    X=[x(1:9,:);x(n,:)]; 
end 
 
Selecting the desired time windows 
 
function [Xout,IDout]=split4kalman(x,not,npacking,noverlap) 
% no overlap needs noverlap=0, other wise percentage of cover 
xa=x(2:9,:); 
trg=x(10,:); 
id=x(11,:)+1; 
M=length(trg); 
indf=find(trg,1,'first'); 
  
trgn=trg(:,indf:M); 
Xa=xa(:,indf:M); 
id=id(:,indf:M); 
%% First Step of separating valuable recorded data from rest times 
  
ri=0; 
fi=0; 
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ff=0; 
rr=0; 
for i=0:not-1 
  
j=0; 
jj=0; 
k=0; 
kk=0; 
while jj<(j+1) 
    if trgn(rr+jj+1)==1 
        j=j+1; 
        jj=jj+1; 
    else 
        j=j-1; 
        jj=jj; 
    end 
end 
  
while (kk<(k+1)) && (rr+jj+kk<M-1) 
    if   ((rr+jj+kk+1)<54001) && (trgn(rr+jj+kk+1)==0) 
        k=k+1; 
        kk=kk+1; 
    else 
        k=k-1; 
        kk=kk; 
    end 
end 
  
if i<not-1 
   fi=ri+1; 
   ff=(fi-1)+(jj); 
   ri=ff+kk; 
else  
   fi=ri+1; 
   ff=(fi-1)+(jj); 
end 
  
X=Xa(:,fi:ff); 
IND=id(:,fi:ff); 
idout1(i+1).id=IND; 
Xout1(i+1).X=X; 
rr=ff+kk; 
  
end 
  
%% spliting data with decided time-windows 
for i=1:not 
    xa=Xout1(i).X; 
    id=idout1(i).id; 
    [m n]=size(xa); 
    nn=floor(n/npacking); % by this approximation we are discarding the 
rest of trial data from following analysis procedure 
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    nloop=((nn-1)*(1/(1-noverlap))+1); 
    fi=0; 
    ff=0; 
  for j=1:nloop 
      % for now overlapping is discarded 
      fi=npacking*(1-noverlap)*(j-1)+1; 
      ff=fi-1+npacking; 
      Xout(i,j).X=xa(:,fi:ff); 
      IDout(i,j).ID=id(:,fi:ff); 
  end 
  
end 
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CCA Matlab code: 

function 
[Xccaout,Aout,Bout,rout,Uout,Vout,statsout,RR,C,I,RRol,Col,Iol,Erate,Er
ateni,Erateol,xtl,wilks,chisq,Ini]=cca4ssvep2(X,ntest,not,npacking,S,no
verlapped) 
% cca4ssvep2 is for our data and 1 is for gtec 
nn=npacking; 
h=npacking/256; 
%Xa=X(2:9,1:56320); 
[m n]=size(X); 
fe=0; 
fi=0; 
ri=1281; % means that first 10 s was base line activity and 
useless0+nn*trest/h+ 
%% Spliter Call 
[Xccaout]=split4kalman(X,not,npacking,noverlapped); 
  
  
%% Data Analysis for CCA, test Run confirmation 
  
  
% Creation of STIMULATION Frequencies, first run with 3 harmonics, 
stimulus 
% are 10, 11, 12, 13 Hz, respectively 
t=0.0039*(0:1:(npacking-1)); 
Yref1=[sin(20*pi*t);cos(20*pi*t);sin(40*pi*t);cos(40*pi*t);sin(60*pi*t)
;cos(60*pi*t)]; 
%;sin(40*pi*t);cos(40*pi*t);sin(60*pi*t);cos(60*pi*t) 
Yref2=[sin(22*pi*t);cos(22*pi*t);sin(44*pi*t);cos(44*pi*t);sin(66*pi*t)
;cos(66*pi*t)]; 
%;sin(44*pi*t);cos(44*pi*t);sin(66*pi*t);cos(66*pi*t) 
Yref3=[sin(24*pi*t);cos(24*pi*t);sin(48*pi*t);cos(48*pi*t);sin(72*pi*t)
;cos(72*pi*t)]; 
%;sin(48*pi*t);cos(48*pi*t);sin(72*pi*t);cos(72*pi*t) 
Yref4=[sin(26*pi*t);cos(26*pi*t);sin(52*pi*t);cos(52*pi*t);sin(78*pi*t)
;cos(78*pi*t)]; 
%;sin(52*pi*t);cos(52*pi*t);sin(78*pi*t);cos(78*pi*t) 
Yref(1).Yref=Yref1; 
Yref(2).Yref=Yref2; 
Yref(3).Yref=Yref3; 
Yref(4).Yref=Yref4; 
  
  
if S==1 
    nloop=ntest; 
elseif S==2 
    nloop=((ntest-1)*(1/(1-noverlapped))+1); 
end 
[nnn,Wn]=cheb1ord([9.9 13.1]/256,[9.5 13.5]/256,1,60); 
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[b,a] = cheby1(nnn,1,Wn); 
  
for i=1:20 
    for j=1:nloop 
        Xccain1=Xccaout(i,j).X; 
      %  Xccain2=amuse(Xccain1); 
       % Xccain21=sgolayfilt(Xccain2',ntest-2,npacking-1)'; 
        Xcca = filter(b,a,Xccain1); 
        for k=1:4 
[AA,BB,rr,UU,VV,statss]=canoncorr(Xcca',Yref(k).Yref'); 
        
        A(k).A=AA; 
        B(k).B=BB; 
        r(k).r=rr; 
        U(k).U=UU; 
        V(k).V=VV; 
        stats(k).stats=statss; 
         
        end 
        Aout(i,j).A=A; 
        Bout(i,j).B=B; 
        rout(i,j).r=r; 
        Uout(i,j).U=U; 
        Vout(i,j).V=V; 
        statsout(i,j).stats=stats; 
    end 
end 
  
%% Printing r of 4 stimulus 
RR=zeros(4,(20*nloop));  %number of total tests 
for i=1:20 
    for j=1:nloop 
        for k=1:4 
            RR(k,((i-1)*nloop+j))=max(abs(rout(i,j).r(1,k).r)); 
        end 
    end 
end 
Xaxis=[1:1:length(RR)]; 
%**********************************************************************
***********************************************************************
*************************** 
nw=num2str(npacking); %??????????????????????????????????????? plot 1 
canonical correlation coeff. 
subplot(4,1,1), plot(Xaxis,RR(1,:),'-ob') 
ylabel('Correlation Coeff.') 
xlabel('time steps,sampling rate: 256 Hz') 
title('Canonical Correlation, 10 Hz') 
subplot(4,1,2), plot(Xaxis,RR(2,:),'--sg') 
ylabel('Correlation Coeff.') 
xlabel('time steps,sampling rate: 256 Hz') 
title('Canonical Correlation, 11 Hz') 
subplot(4,1,3), plot(Xaxis,RR(3,:),'--*r') 
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ylabel('Correlation Coeff.') 
xlabel('time steps,sampling rate: 256 Hz') 
title('Canonical Correlation, 12 Hz') 
subplot(4,1,4), plot(Xaxis,RR(4,:),'-.+c') 
ylabel('Correlation Coeff.') 
xlabel('time steps,sampling rate: 256 Hz') 
title('Canonical Correlation, 13 Hz') 
  
%% Detection of Intention, Error Rate computation 
% process is simple and has no statistical test 
% I vector indicates which row or here which frequency has the max 
% correlation. 
%**********************************************************************
***********************************************************************
*************************** 
% this means I vector pointing at user intention 
[C,I]=max(RR,[],1); 
%figure 
%plot(Xaxis,I) 
%ylabel('Max Index NO.') 
%xlabel('Test set') 
%title('Cmd evaluation') 
  
%**********************************************************************
***********************************************************************
*************************** 
% calculating overlapped RR matrix (RRol is smoothed Covariance matrix 
for 
% every signal and test set) 
  
RRol=zeros(4,(20*nloop));  %number of total tests 
for i=1:20 
    for j=1:2 
    for k=1:4 
    RRol(k,((i-1)*nloop+j))=RR(k,((i-1)*nloop+j)); 
    end 
    end 
end 
for i=1:20 
    for j=3:nloop 
        for k=1:4 
            RRol(k,((i-1)*nloop+j))=mean(RR(k,((i-1)*nloop+j-2):((i-
1)*nloop+j))); 
        end 
    end 
end 
%**********************************************************************
***********************************************************************
*************************** 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% plot 2 smoothed correlation coeff.  
figure 
subplot(4,1,1), plot(Xaxis,RRol(1,:),'-ob') 
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ylabel('Correlation Coeff. Factor') 
xlabel('Sampling rate: 256 Hz') 
title('Canonical Correlation, 10 Hz') 
subplot(4,1,2), plot(Xaxis,RRol(2,:),'--sg') 
ylabel('Correlation Coeff. Factor') 
xlabel('Sampling rate: 256 Hz') 
title('Canonical Correlation, 11 Hz') 
subplot(4,1,3), plot(Xaxis,RRol(3,:),'--*r') 
ylabel('Correlation Coeff. Factor') 
xlabel('Sampling rate: 256 Hz') 
title('Canonical Correlation, 12 Hz') 
subplot(4,1,4), plot(Xaxis,RRol(4,:),'-.+c') 
ylabel('Correlation Coeff. Factor') 
xlabel('Sampling rate: 256 Hz') 
title('Canonical Correlation, 13 Hz') 
%**********************************************************************
***********************************************************************
*************************** 
% printing user intention based on overlapped RR (smoothed correlation 
% coeff. 
[Col,Iol]=max(RRol,[],1); 
%figure 
%plot(Xaxis,Iol) 
%ylabel('Max Index NO. with smth Corr. Coeff.') 
%xlabel('Test set') 
%title('Cmd evaluation by MA filter RR') 
%% Finding every test trial error rate 
  
% flickering test protocol based on gSTIMbox 
xtl=zeros(1,length(I)); 
ffi=0; 
ffe=0; 
for i=1:5 
for k=1:4 
   ffi=((k-1)+4*(i-1))*(nloop)+1; 
   ffe=(ffi-1)+(nloop); 
   xtl(1,ffi:ffe)=k*ones(1,nloop); 
end 
end 
%xtl(1,1:125)=ones(1,125); 
%xtl(1,126:250)=2*ones(1,125); 
%xtl(1,251:375)=3*ones(1,125); 
%xtl(1,376:500)=4*ones(1,125); 
  
E=zeros(1,length(I)); 
Eol=zeros(1,length(Iol)); 
  
for j=1:20*nloop 
    E(1,j)=isequal(I(1,j),xtl(1,j)); 
end 
  
for j=1:20*nloop 
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    Eol(1,j)=isequal(Iol(1,j),xtl(1,j)); 
end 
  
  
ffi=0; 
ffe=0; 
Erate=zeros(1,20); 
for i=1:20 
    ffi=(i-1)*nloop+1; 
    ffe=ffi-1+nloop; 
    Erate(i)=((sum(E(ffi:ffe))/nloop)*100); 
end 
  
ffii=0; 
ffee=0; 
Erateol=zeros(1,20); 
for i=1:20 
    ffii=(i-1)*nloop+1; 
    ffee=ffii-1+nloop; 
    Erateol(i)=((sum(Eol(ffii:ffee))/nloop)*100); 
end 
  
  
Xaxis=[1:1:length(Erate)]; 
%%%%%%%%%%%%%%%plot 3 Error rate without considering smoothed Canonical 
%%%%%%%%%%%%%%%correlation coeff. 
figure 
plot(Xaxis,Erate) 
ylabel('AVERAGE ACCURACY RATE %') 
xlabel('Test set') 
title('accuracy evaluation of each trial') 
%%%%%%%%%%%%%%%plot 4 Error rate with considering smoothed Canonical 
%%%%%%%%%%%%%%%correlation coeff. 
Xaxis=[1:1:length(Erateol)]; 
figure 
plot(Xaxis,Erateol) 
ylabel('ERAVERAGE ACCURACY RATE %') 
xlabel('Test set') 
title('accuracy evaluation of each trial with smoothed Canonical 
Correlation Coeff.') 
  
%% evaluation test by wilks and chisq criteria 
% finding wilks criteria for each test run and min value  
wilks=zeros(4,(20*nloop));  %number of total tests 
for i=1:20 
    for j=1:nloop 
        for k=1:4 
            wilks(k,((i-
1)*nloop+j))=min(abs(statsout(i,j).stats(1,k).stats.Wilks)); 
        end 
    end 
end 
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% finding chisq criteria for each test run and max value  
chisq=zeros(4,(20*nloop));  %number of total tests 
for i=1:20 
    for j=1:nloop 
        for k=1:4 
            chisq(k,((i-
1)*nloop+j))=max(abs(statsout(i,j).stats(1,k).stats.chisq)); 
        end 
    end 
end 
  
% finding the index of mostly correlated data by statistic test 
[Cwilks,Iwilks]=min(wilks,[],1); 
[Cchisq,Ichisq]=max(chisq,[],1); 
  
% new indexing criteria by test confirmation 
  
Ini=zeros(1,length(Iol)); 
for i=1:20*nloop 
    if isequal(Iwilks(i),Ichisq(i))==1 
        Ini(i)=Iwilks(i); 
    elseif isequal(Iwilks(i),Ichisq(i))==0 
        if Cwilks<0.2 
         Ini(i)=Iwilks(i); 
        elseif Cwilks>=0.2 
            Ini(i)=Ichisq(i); 
        end 
    end 
end 
  
for i=1:20*nloop 
    if isequal(Iol(i),Ini(i))==1 
        Ini(i)=Iol(i); 
    else 
        Ini(i)=Ini(i); 
    end 
end 
  
eni=zeros(1,length(Ini)); 
  
for j=1:20*nloop 
    eni(1,j)=isequal(Ini(1,j),xtl(1,j)); 
end 
Erateni=zeros(1,20); 
  
ffni=0; 
ffne=0; 
for i=1:20 
    ffni=(i-1)*nloop+1; 
    ffne=ffni-1+nloop; 
    Erateni(i)=((sum(eni(ffni:ffne))/nloop)*100); 



www.manaraa.com

 

169 
 

end 
  
%plot 5 the Error rate under consideration of evaluation test 
Xaxis=[1:1:length(Erateni)]; 
figure 
plot(Xaxis,Erateni) 
ylabel('AVERAGE ACCURACY RATE %') 
xlabel('Test set') 
title('accuracy evaluation of each trial with considering evaluation 
test') 
% for later Excel use 
Erate=Erate'; 
Erateni=Erateni'; 
Erateol=Erateol'; 
RR=RR'; 
RRol=RRol'; 
  
%% calculating ITR 
% B=log2(N)+plog2(p)+(1-p)*log2((1-p)/(N-1)), B=bits/trial and for each 
% in each test npacking/256*60*1/(1-noverlap) multiple by B results in 
% bits/min ITR  
% ITR for each method calculated 
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Co-Inertia Matlab code: 

function [Fx,Fy,c,d]=Xcoinertia2(X,Y) 
% this m file operates the coinertia analysis on every two data 
matrices 
% that recieves. 
% X(n*p1) and Y(n*p2) are two datasets, n is observation no. and p1 & 
p2 
% are no. of variants for each matrix respectively, 
% 
%%Coinertia analysis preparation 
if nargin < 2 
    disp('message:(stats:canoncorr:TooFewInputs)'); 
end 
  
[n,p1] = size(X); 
if size(Y,1) ~= n 
    disp('message:(stats:canoncorr:InputSizeMismatch'); 
elseif n == 1 
    disp('message:(stats:canoncorr:NotEnoughData)'); 
end 
p2 = size(Y,2); 
% performing FIR1 bandpass filter with Savitzky-Golay window function 
  
  
  
  
  
% calculating centred matrices, 
  
xc = X - repmat(mean(X,1), n, 1); 
yc = Y - repmat(mean(Y,1), n, 1); 
% finding the max no. of co-inertia axes that data should be objected 
on 
  
cov12=(1/(n-1))*xc'*yc; 
cc=min(rank(xc),rank(yc)); 
covv=cov12'*cov12; 
[V U]=eig(covv); 
crank=nnz(diag(U)); 
  
if cc<=crank 
    c=cc; 
else 
    c=crank; 
end 
% computing the objected matrices 
  
[L,W,M] = svds(cov12,c); 
% diag. matrix of eigenvalues 
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D=W^2; 
  
F1=normc(xc*L); 
Fx=(sqrt(n-1)*F1)*D^(1/2); 
F2=normc(yc*M); 
Fy=(sqrt(n-1)*F2)*D^(1/2); 
% calculating the objected distances based on mahalanobis distance 
dd=pdist2(Fy,Fx); 
d=diag(dd); 
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Adaptive Kalman filter 

function [cfout,Sout,Vout]=kal4ssvep2(Xout,L,lamda,npack) 
% performing Kalman filter modified for Exponentially weighted RLS 
filter 
% of order L, forgetting factor lamda less than 1, npack is the time 
steps 
% in each data pack, not is the total number of trial for each EEG test 
% matrix x 
  
  
[m n]=size(Xout); 
%% 
%% 
            t=0.0039*(1:1:npack); 
            
xref1=[sin(20*pi*t);cos(20*pi*t);sin(40*pi*t);cos(40*pi*t);sin(60*pi*t)
;cos(60*pi*t)]'; 
            %;sin(40*pi*t);cos(40*pi*t);sin(60*pi*t);cos(60*pi*t) 
            
xref2=[sin(22*pi*t);cos(22*pi*t);sin(44*pi*t);cos(44*pi*t);sin(66*pi*t)
;cos(66*pi*t)]'; 
            %;sin(44*pi*t);cos(44*pi*t);sin(66*pi*t);cos(66*pi*t) 
            
xref3=[sin(24*pi*t);cos(24*pi*t);sin(48*pi*t);cos(48*pi*t);sin(72*pi*t)
;cos(72*pi*t)]'; 
            %;sin(48*pi*t);cos(48*pi*t);sin(72*pi*t);cos(72*pi*t) 
            
xref4=[sin(26*pi*t);cos(26*pi*t);sin(52*pi*t);cos(52*pi*t);sin(78*pi*t)
;cos(78*pi*t)]'; 
            %;sin(52*pi*t);cos(52*pi*t);sin(78*pi*t);cos(78*pi*t) 
            xref(1).xref=xref1; 
            xref(2).xref=xref2; 
            xref(3).xref=xref3; 
            xref(4).xref=xref4; 
%% 
%% 
%[nnn,Wn]=cheb1ord([9.9 13.1]/256,[9.5 13.5]/256,1,60); 
%[b,a] = cheby1(nnn,1,Wn); 
for i=1:m 
    for j=1:n 
        for jj=1:4 
            hs=Xout(i,j).X'; 
            %hs=amuse(hhs')'; 
            %hs = filter(b,a,hhs)'; 
            [mmm nnn]=size(hs); 
            % setting up the initial values 
            cf=0; 
            re=0; 
            Kp=zeros(nnn*L,1); 
            v=zeros(1,6); 
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            % mmm time steps of each channel nnn 
            p=(lamda^-1)*eye(nnn*L,nnn*L); 
            x=zeros(nnn*L,6); 
            x0=zeros(nnn*L,6); 
            U=zeros(mmm,nnn*L); 
            for ii=1:mmm 
                 % creating input matrix U 1*(nnn*L) at each time frame 
with p 
                 % channels data of L overlap of time 
                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                for k=1:nnn 
                for kk=1:L 
                    if ii-kk>=0 
                    U(ii,(k-1)*L+kk)=hs((ii-kk+1),k); 
                    else 
                        U(ii,(k-1)*kk+kk)=0; 
                    end 
                end 
                end 
                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                re=1+U(ii,:)*p*U(ii,:)'; 
                Kp=(lamda^-0.5)*p*U(ii,:)'/re; 
                v=(lamda^-1)*xref(jj).xref(ii,:)-(U(ii,:)*x); 
                x=(lamda^-0.5)*x+Kp*v; 
                p=(lamda^-1)*(p-
((p*U(ii,:)'*U(ii,:)*p)/(1+U(ii,:)*p*U(ii,:)'))); 
                x0=(lamda^(0.5*(ii+1)))*x; 
                cf=lamda*cf+(v*v')/re; 
                cfout(i,j).cf(ii,jj)=cf; 
                Sout(i,j).Sf(1,jj).Sf(ii,:)=U(ii,:)*x0*(lamda^(-
0.5*(ii+1))); 
                Vout(i,j).Vf(1,jj).Vf(ii,:)=v; 
               
            end 
        end 
    end 
end 
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Adaptive robust Gauss-Newton filter 

function [Sout,Vout]=gn4ssvep(Xout,L,gamma,npack) 
% performing Kalman filter modified for Exponentially weighted RLS 
filter 
% of order L, forgetting factor lamda less than 1, npack is the time 
steps 
% in each data pack, not is the total number of trial for each EEG test 
% matrix x 
  
  
[m n]=size(Xout); 
%% 
%% 
            t=0.0039*(1:1:npack); 
            
xref1=[sin(20*pi*t);cos(20*pi*t);sin(40*pi*t);cos(40*pi*t);sin(60*pi*t)
;cos(60*pi*t)]'; 
            %;sin(40*pi*t);cos(40*pi*t);sin(60*pi*t);cos(60*pi*t) 
            
xref2=[sin(22*pi*t);cos(22*pi*t);sin(44*pi*t);cos(44*pi*t);sin(66*pi*t)
;cos(66*pi*t)]'; 
            %;sin(44*pi*t);cos(44*pi*t);sin(66*pi*t);cos(66*pi*t) 
            
xref3=[sin(24*pi*t);cos(24*pi*t);sin(48*pi*t);cos(48*pi*t);sin(72*pi*t)
;cos(72*pi*t)]'; 
            %;sin(48*pi*t);cos(48*pi*t);sin(72*pi*t);cos(72*pi*t) 
            
xref4=[sin(26*pi*t);cos(26*pi*t);sin(52*pi*t);cos(52*pi*t);sin(78*pi*t)
;cos(78*pi*t)]'; 
            %;sin(52*pi*t);cos(52*pi*t);sin(78*pi*t);cos(78*pi*t) 
            xref(1).xref=xref1; 
            xref(2).xref=xref2; 
            xref(3).xref=xref3; 
            xref(4).xref=xref4; 
%% 
%% 
%[nnn,Wn]=cheb1ord([9.9 13.1]/256,[9.5 13.5]/256,1,60); 
%[b,a] = cheby1(nnn,1,Wn); 
for i=1:m 
    for j=1:n 
        for jj=1:4 
            hs=Xout(i,j).X'; 
            %hs=amuse(hhs')'; 
            %hs = filter(b,a,hhs)'; 
            [mmm nnn]=size(hs); 
            % setting up the initial values 
            % mmm time steps of each channel nnn 
            p=(gamma^-1)*eye(nnn*L,nnn*L); 
            w=zeros(nnn*L,6); 
            pbar=zeros(nnn*L,nnn*L); 
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            Pb=zeros(nnn*L,nnn*L); 
            U=zeros(mmm,nnn*L); 
            for ii=1:mmm 
                 % creating input matrix U 1*(nnn*L) at each time frame 
with p 
                 % channels data of L overlap of time 
                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                for k=1:nnn 
                for kk=1:L 
                    if ii-kk>=0 
                    U(ii,(k-1)*L+kk)=hs((ii-kk+1),k); 
                    else 
                        U(ii,(k-1)*kk+kk)=0; 
                    end 
                end 
                end 
                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                Pb=inv(p)-(gamma)^(-2)*U(ii,:)'*U(ii,:); 
                pbar=inv(Pb); 
                
w=w+((pbar*U(ii,:)')/(1+(U(ii,:)*pbar*U(ii,:)')))*(xref(jj).xref(ii,:)-
(U(ii,:)*w)); 
                p=p-((p*U(ii,:)'*U(ii,:)*p)/((1-gamma^-2)^-
1+(U(ii,:)*p*U(ii,:)'))); 
                Sout(i,j).Sf(1,jj).Sf(ii,:)=U(ii,:)*w; 
                Vout(i,j).Vf(1,jj).Vf(ii,:)=(xref(jj).xref(ii,:)-
(U(ii,:)*w)); 
               
            end 
        end 
    end 
end 
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Adaptive unconstrained DFT filter 

function 
[Xout1,U2bnout,lamdaout,Dbar,Ebar]=dftblock4ssvep(Xout,B,M,beta,mu,nove
rlap) 
%% spliting data with decided time-windows 
[m n]=size(Xout); 
R=(M/B); 
for I=1:n 
    xa=Xout(I).X; 
    [mm nn]=size(xa); 
    N=floor(nn/B); % by this approximation we are discarding the rest 
of trial data from following analysis procedure 
    nloop=((N-1)*(1/(1-noverlap))+1); 
    fi=0; 
    ff=0; 
  for J=1:nloop 
      % for now overlapping is discarded 
      fi=B*(1-noverlap)*(J-1)+1; 
      ff=fi-1+B; 
      Xout1(I,J).X=xa(:,fi:ff)'; 
  end 
end 
%% Creating the F transform matrix 
F=dftmtx(2*B); 
% F=zeros(2*B,2*B); 
% for ii=1:(2*B) 
%     for jj=1:(2*B) 
%         F(ii,jj)=exp((-1i*2*pi*((ii-1)*(jj-1)))/(2*B)); 
%     end 
% end   
  
%% creating the U'2B,N and computing lamda matrix 
for ii=1:n 
    for jj=1:nloop 
        for jjj=1:mm 
            for iii=1:2*B 
                lamdaout(ii,jj).lamda(iii,jjj)=0; 
            end 
        end 
    end 
    for jj=2:nloop 
        X0=Xout1(ii,jj-1).X; 
        X1=Xout1(ii,jj).X; 
        %U2bn=F*[X1;X0]; 
        U2bn=fft([X1;X0]); 
        [k,p]=size(U2bn); 
        for jjj=1:p 
            for iii=1:k 
                lamda(iii,jjj)=(beta*(lamdaout(ii,jj-
1).lamda(iii,jjj)))+((1-beta)*(abs(U2bn(iii,jjj))^2)); 
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            end 
        end 
        U2bnout(ii,jj-1).U2bn=U2bn; 
        lamdaout(ii,jj).lamda=lamda; 
    end 
end 
   
%% Creating the LED signals 
            t=0.0039*(1:1:B); 
            
xref1=[sin(20*pi*t);cos(20*pi*t);sin(40*pi*t);cos(40*pi*t);sin(60*pi*t)
;cos(60*pi*t)]'; 
            %;sin(40*pi*t);cos(40*pi*t);sin(60*pi*t);cos(60*pi*t) 
            
xref2=[sin(22*pi*t);cos(22*pi*t);sin(44*pi*t);cos(44*pi*t);sin(66*pi*t)
;cos(66*pi*t)]'; 
            %;sin(44*pi*t);cos(44*pi*t);sin(66*pi*t);cos(66*pi*t) 
            
xref3=[sin(24*pi*t);cos(24*pi*t);sin(48*pi*t);cos(48*pi*t);sin(72*pi*t)
;cos(72*pi*t)]'; 
            %;sin(48*pi*t);cos(48*pi*t);sin(72*pi*t);cos(72*pi*t) 
            
xref4=[sin(26*pi*t);cos(26*pi*t);sin(52*pi*t);cos(52*pi*t);sin(78*pi*t)
;cos(78*pi*t)]'; 
            %;sin(52*pi*t);cos(52*pi*t);sin(78*pi*t);cos(78*pi*t) 
            xref(1).xref=xref1; 
            xref(2).xref=xref2; 
            xref(3).xref=xref3; 
            xref(4).xref=xref4; 
%%       after computing the lamda matrix we are preparing the buffered 
        % data 
        % M is the filter order and R=M/B is the size of buffered 
vector 
        % for each element 
        % configuring the buffered matrix of U'k,n 
     % null assumption on Lckn matrix 
     for ll=1:2*B    
        Lckn(ll).Lckn=zeros((R*p),6); 
        %Lkn1(ll).Lkn1=zeros((R*p),6); 
        Lkn(ll).Lkn=zeros((R*p),6); 
     end   
       
        
 for ii=1:n 
  
     for jj=1:nloop-1 
         for K=1:4  
          
         Ukn=zeros((2*B),(R*p)); 
         for iii=1:R 
             if (jj-iii+1)>0 
                 U(iii).U=U2bnout(ii,(jj-iii+1)).U2bn; 
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             else 
                 U(iii).U=zeros((2*B),(p)); 
             end 
         end 
         for iii=1:p 
             for jjj=1:R 
                 Ukn(:,(jjj+(iii-1)*R))=U(jjj).U(:,iii); 
             end 
         end 
         
         % finding the y'k,n matrix of 2B*q 
         for k=1:(2*B) 
         Ykn(k,:)=Ukn(k,:)*Lckn(k).Lckn; 
         % Ykn(k,:)=Ykn1; 
         end 
         %Dbarbn=[eye(B),zeros(B)]*inv(F)*Ykn; 
         Dbarbn=[eye(B),zeros(B)]*ifft(Ykn); 
         Ebn=xref(K).xref-Dbarbn; 
         %E2bn=F*[eye(B);zeros(B)]*Ebn; 
         E2bn=fft([eye(B);zeros(B)]*Ebn); 
          
         % configuring the Lkn matrix for each EEG and LED 
         % channel 
          
         % for each of p channels: 
         for kk=1:(2*B) 
             %Lkn=0; 
             % for each time step of 2B in a block 
             for k=1:p 
                 %Lkn1=0; 
                 for hh=1:R 
                     if ((jj+1)-(hh-1))>1 
                         Lkn(kk).Lkn((((k-
1)*R)+hh),:)=Lkn(kk).Lkn((((k-1)*R)+hh),:)+((mu/(lamdaout(ii,((jj+1)-
(hh-1))).lamda(kk,k)))*(Ukn(kk,(((k-1)*R)+hh)))'*E2bn(kk,:)); 
                         %Lkn(kk).Lkn(((k-
1)*R+1):(k*R),:)=Lkn(kk).Lkn(((k-
1)*R+1):(k*R),:)+((mu/(lamdaout(ii,jj+1).lamda(kk,k)))*(Ukn(kk,((k-
1)*R+1):(k*R)))'*E2bn(kk,:)); 
                     else 
                         Lkn(kk).Lkn((((k-
1)*R)+hh),:)=Lkn(kk).Lkn((((k-1)*R)+hh),:); 
                     end 
                          
                 end 
                 %Lkn(kk).Lkn()=Lkn1(kk).Lkn1; 
             end 
              
         end 
          
         % configuring the Lckn matrix for each channel of EEG and LED 
         % for each of q channels, q=6 
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         for k=1:6 
             LKN=zeros((2*B),(R*p)); 
             LCKN=zeros((2*B),(R*p)); 
             for kk=1:2*B 
                 LKN(kk,:)=Lkn(kk).Lkn(:,k)'; 
             end 
             %LCKN=inv(F)*[eye(B),zeros(B);zeros(B),zeros(B)]*F*LKN; 
             LCKN=ifft([eye(B),zeros(B);zeros(B),zeros(B)]*fft(LKN)); 
             for kk=1:2*B 
                 Lckn(kk).Lckn(:,k)=LCKN(kk,:)'; 
             end 
         end 
         % configureing the final Dbar and Error Matrices for each LED 
frequency 
  
         %Dbar=zeors(n,nloop-1); 
         %Ebar=zeors(n,nloop-1); 
         Dbar(ii).Dbar(K).Dbar(:,((jj-1)*B+1):jj*B)=Dbarbn'; 
         Ebar(ii).Ebar(K).Ebar(:,((jj-1)*B+1):jj*B)=Ebn'; 
         end 
     end 
 end 
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Decision making methods: 

SSVEP response detection for Kalman filter: 

function 
[Xout1,U2bnout,lamdaout,Dbar,Ebar]=dftblock4ssvep(Xout,B,M,beta,mu,nove
rlap) 
%% spliting data with decided time-windows 
[m n]=size(Xout); 
R=(M/B); 
for I=1:n 
    xa=Xout(I).X; 
    [mm nn]=size(xa); 
    N=floor(nn/B); % by this approximation we are discarding the rest 
of trial data from following analysis procedure 
    nloop=((N-1)*(1/(1-noverlap))+1); 
    fi=0; 
    ff=0; 
  for J=1:nloop 
      % for now overlapping is discarded 
      fi=B*(1-noverlap)*(J-1)+1; 
      ff=fi-1+B; 
      Xout1(I,J).X=xa(:,fi:ff)'; 
  end 
end 
%% Creating the F transform matrix 
F=dftmtx(2*B); 
% F=zeros(2*B,2*B); 
% for ii=1:(2*B) 
%     for jj=1:(2*B) 
%         F(ii,jj)=exp((-1i*2*pi*((ii-1)*(jj-1)))/(2*B)); 
%     end 
% end   
  
%% creating the U'2B,N and computing lamda matrix 
for ii=1:n 
    for jj=1:nloop 
        for jjj=1:mm 
            for iii=1:2*B 
                lamdaout(ii,jj).lamda(iii,jjj)=0; 
            end 
        end 
    end 
    for jj=2:nloop 
        X0=Xout1(ii,jj-1).X; 
        X1=Xout1(ii,jj).X; 
        %U2bn=F*[X1;X0]; 
        U2bn=fft([X1;X0]); 
        [k,p]=size(U2bn); 
        for jjj=1:p 
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            for iii=1:k 
                lamda(iii,jjj)=(beta*(lamdaout(ii,jj-
1).lamda(iii,jjj)))+((1-beta)*(abs(U2bn(iii,jjj))^2)); 
            end 
        end 
        U2bnout(ii,jj-1).U2bn=U2bn; 
        lamdaout(ii,jj).lamda=lamda; 
    end 
end 
   
%% Creating the LED signals 
            t=0.0039*(1:1:B); 
            
xref1=[sin(20*pi*t);cos(20*pi*t);sin(40*pi*t);cos(40*pi*t);sin(60*pi*t)
;cos(60*pi*t)]'; 
            %;sin(40*pi*t);cos(40*pi*t);sin(60*pi*t);cos(60*pi*t) 
            
xref2=[sin(22*pi*t);cos(22*pi*t);sin(44*pi*t);cos(44*pi*t);sin(66*pi*t)
;cos(66*pi*t)]'; 
            %;sin(44*pi*t);cos(44*pi*t);sin(66*pi*t);cos(66*pi*t) 
            
xref3=[sin(24*pi*t);cos(24*pi*t);sin(48*pi*t);cos(48*pi*t);sin(72*pi*t)
;cos(72*pi*t)]'; 
            %;sin(48*pi*t);cos(48*pi*t);sin(72*pi*t);cos(72*pi*t) 
            
xref4=[sin(26*pi*t);cos(26*pi*t);sin(52*pi*t);cos(52*pi*t);sin(78*pi*t)
;cos(78*pi*t)]'; 
            %;sin(52*pi*t);cos(52*pi*t);sin(78*pi*t);cos(78*pi*t) 
            xref(1).xref=xref1; 
            xref(2).xref=xref2; 
            xref(3).xref=xref3; 
            xref(4).xref=xref4; 
%%       after computing the lamda matrix we are preparing the buffered 
        % data 
        % M is the filter order and R=M/B is the size of buffered 
vector 
        % for each element 
        % configuring the buffered matrix of U'k,n 
     % null assumption on Lckn matrix 
     for ll=1:2*B    
        Lckn(ll).Lckn=zeros((R*p),6); 
        %Lkn1(ll).Lkn1=zeros((R*p),6); 
        Lkn(ll).Lkn=zeros((R*p),6); 
     end   
       
        
 for ii=1:n 
  
     for jj=1:nloop-1 
         for K=1:4  
          
         Ukn=zeros((2*B),(R*p)); 
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         for iii=1:R 
             if (jj-iii+1)>0 
                 U(iii).U=U2bnout(ii,(jj-iii+1)).U2bn; 
             else 
                 U(iii).U=zeros((2*B),(p)); 
             end 
         end 
         for iii=1:p 
             for jjj=1:R 
                 Ukn(:,(jjj+(iii-1)*R))=U(jjj).U(:,iii); 
             end 
         end 
         
         % finding the y'k,n matrix of 2B*q 
         for k=1:(2*B) 
         Ykn(k,:)=Ukn(k,:)*Lckn(k).Lckn; 
         % Ykn(k,:)=Ykn1; 
         end 
         %Dbarbn=[eye(B),zeros(B)]*inv(F)*Ykn; 
         Dbarbn=[eye(B),zeros(B)]*ifft(Ykn); 
         Ebn=xref(K).xref-Dbarbn; 
         %E2bn=F*[eye(B);zeros(B)]*Ebn; 
         E2bn=fft([eye(B);zeros(B)]*Ebn); 
          
         % configuring the Lkn matrix for each EEG and LED 
         % channel 
          
         % for each of p channels: 
         for kk=1:(2*B) 
             %Lkn=0; 
             % for each time step of 2B in a block 
             for k=1:p 
                 %Lkn1=0; 
                 for hh=1:R 
                     if ((jj+1)-(hh-1))>1 
                         Lkn(kk).Lkn((((k-
1)*R)+hh),:)=Lkn(kk).Lkn((((k-1)*R)+hh),:)+((mu/(lamdaout(ii,((jj+1)-
(hh-1))).lamda(kk,k)))*(Ukn(kk,(((k-1)*R)+hh)))'*E2bn(kk,:)); 
                         %Lkn(kk).Lkn(((k-
1)*R+1):(k*R),:)=Lkn(kk).Lkn(((k-
1)*R+1):(k*R),:)+((mu/(lamdaout(ii,jj+1).lamda(kk,k)))*(Ukn(kk,((k-
1)*R+1):(k*R)))'*E2bn(kk,:)); 
                     else 
                         Lkn(kk).Lkn((((k-
1)*R)+hh),:)=Lkn(kk).Lkn((((k-1)*R)+hh),:); 
                     end 
                          
                 end 
                 %Lkn(kk).Lkn()=Lkn1(kk).Lkn1; 
             end 
              
         end 
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         % configuring the Lckn matrix for each channel of EEG and LED 
         % for each of q channels, q=6 
         for k=1:6 
             LKN=zeros((2*B),(R*p)); 
             LCKN=zeros((2*B),(R*p)); 
             for kk=1:2*B 
                 LKN(kk,:)=Lkn(kk).Lkn(:,k)'; 
             end 
             %LCKN=inv(F)*[eye(B),zeros(B);zeros(B),zeros(B)]*F*LKN; 
             LCKN=ifft([eye(B),zeros(B);zeros(B),zeros(B)]*fft(LKN)); 
             for kk=1:2*B 
                 Lckn(kk).Lckn(:,k)=LCKN(kk,:)'; 
             end 
         end 
         % configureing the final Dbar and Error Matrices for each LED 
frequency 
  
         %Dbar=zeors(n,nloop-1); 
         %Ebar=zeors(n,nloop-1); 
         Dbar(ii).Dbar(K).Dbar(:,((jj-1)*B+1):jj*B)=Dbarbn'; 
         Ebar(ii).Ebar(K).Ebar(:,((jj-1)*B+1):jj*B)=Ebn'; 
         end 
     end 
 end 
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SSVEP response detection for Gauss-Newton filter 

function [Psout,Pvout,f,ind,SNR,Arate]=psd4gn(Sout,Vout) 
  
% assuming LED stimulation box flickers at 10 11 12 13 Hz for channels 
1 to 
% 4 of l channels of input structures  
[m n]=size(Sout); 
for i=1:m 
    for j=1:n 
        [k l]=size(Sout(i,j).Sf); 
        for ii=1:l 
            [mm nn]=size(Sout(i,j).Sf(k,ii).Sf); 
            PS=zeros(1,nn); 
            for jj=1:nn 
            [pxx 
f]=periodogram(Sout(i,j).Sf(k,ii).Sf(:,jj)',[]','onesided',mm,256); 
            Pxx=max(pxx); 
         %   Pxxout(i,j).Pxx(k,ii).pxx(:,jj)=Pxx; 
            PS(1,jj)=Pxx; 
            end 
            Psout(i,j).Ps(:,ii).Ps=PS; 
        end 
    end 
end 
  
for i=1:m 
    for j=1:n 
        [k l]=size(Vout(i,j).Vf); 
        for ii=1:l 
            [mm nn]=size(Vout(i,j).Vf(k,ii).Vf); 
            SIGMA2=zeros(1,nn); 
            for jj=1:nn 
           % [pxxv 
f]=periodogram(Vout(i,j).Vf(k,ii).Vf(:,jj)',[]','onesided',mm,256); 
            [ar_coeffs,NoiseVariance] = 
aryule(Vout(i,j).Vf(k,ii).Vf(:,jj)',25); 
             
           % Pxxvout(i,j).Pxxv(k,ii).pxxv(:,jj)=Pxxv; 
            SIGMA2(1,jj)=NoiseVariance; 
            end 
            Pvout(i,j).Pv(:,ii).Pv=SIGMA2; 
        end 
    end 
end 
  
for i=1:m 
     for j=1:n 
          for ii=1:l 
                SnR=0; 
              for jj=1:nn 
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snr=Psout(i,j).Ps(ii).Ps(1,jj)^2/Pvout(i,j).Pv(ii).Pv(1,jj); 
                SnR=snr+SnR; 
              end 
                SNR(i,j).SNR(1,ii)=SnR; 
          end 
            [C I]=max(SNR(i,j).SNR,[],2); 
            ind(i,j)=I; 
     end 
end 
  
%% creating test set up indexing matrix 
ti=ones(m,n); 
for i=1:m 
    ti(i,:)=(i-(4*(ceil(i/4)-1)))*ones(1,n); 
end 
  
%% Accuracy rate calculations 
rate=zeros(m,n); 
for i=1:m 
    for j=1:n 
        rate(i,j)=isequal(ti(i,j),ind(i,j)); 
    end 
end 
  
Arate=zeros(1,m); 
for i=1:m 
    Arate(1,i)=(sum(rate(i,:))/n)*100; 
end 
  
Xaxis=[1:1:length(Arate)]; 
figure 
plot(Xaxis,Arate) 
ylabel('AVERAGE ACCURACY RATE %') 
xlabel('Test set') 
title('accuracy evaluation of each trial') 
Arate=Arate'; 
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Printing signal plots code: 

function []=plotsig(t,varargin) 
% t is our time vector, varargin is from workspace and are the signals 
user 
% intends to plot 
n=nargin; 
  
for i=1:n 
hold on 
Z=varargin{i}; 
[m k]=size(Z); 
for j=1:m 
   figure(i);  
   set(figure(i),'Position',[250+(i-1)*100 0 900 900]); 
   subplot(m,1,j), plot(t,Z(j,:)) 
   xlabel('Time(Sec)') 
   ylabel('microV') 
end 
hold off 
end 
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Power Spectral Density (PSD) Matlab code for detecting SSVEP response peaks (Matlab 
2011b,copy-right reserved for Mathworks CO.): 

function [Px,w,units,Sxx] = periodogram(x,win,varargin) 
%PERIODOGRAM  Power Spectral Density (PSD) estimate via periodogram 
method. 
%   Pxx = PERIODOGRAM(X) returns the PSD estimate of the signal 
specified 
%   by vector X in the vector Pxx.  By default, the signal X is 
windowed 
%   with a rectangular window of the same length as X. The PSD estimate 
is 
%   computed using an FFT of length given by the larger of 256 and the 
next 
%   power of 2 greater than the length of X. 
% 
%   Note that the default window (rectangular) has a 13.3 dB sidelobe 
%   attenuation. This may mask spectral content below this value 
(relative 
%   to the peak spectral content). Choosing different windows will 
enable 
%   you to make tradeoffs between resolution (e.g., using a rectangular 
%   window) and sidelobe attenuation (e.g., using a Hann window). See 
%   WinTool for more details. 
% 
%   Pxx is the distribution of power per unit frequency. For real 
signals, 
%   PERIODOGRAM returns the one-sided PSD by default; for complex 
signals, 
%   it returns the two-sided PSD.  Note that a one-sided PSD contains 
the 
%   total power of the input signal. 
% 
%   Pxx = PERIODOGRAM(X,WINDOW) specifies a window to be applied to X. 
%   WINDOW must be a vector of the same length as X.  If WINDOW is a 
window 
%   other than a rectangular, the resulting estimate is a modified 
%   periodogram.  If WINDOW is specified as empty, the default window 
is 
%   used. 
%  
%   [Pxx,W] = PERIODOGRAM(X,WINDOW,NFFT) specifies the number of FFT 
points 
%   used to calculate the PSD estimate.  For real X, Pxx has length 
%   (NFFT/2+1) if NFFT is even, and (NFFT+1)/2 if NFFT is odd.  For 
complex 
%   X, Pxx always has length NFFT.  If NFFT is specified as empty, the  
%   default NFFT is used. 
% 
%   Note that if NFFT is greater than the segment the data is zero-
padded. 
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%   If NFFT is less than the segment, the segment is "wrapped" (using 
%   DATAWRAP) to make the length equal to NFFT. This produces the 
correct 
%   FFT when NFFT < L, L being signal or segment length.                        
% 
%   W is the vector of normalized frequencies at which the PSD is  
%   estimated.  W has units of rad/sample.  For real signals, W spans 
the 
%   interval [0,Pi] when NFFT is even and [0,Pi) when NFFT is odd.  For 
%   complex signals, W always spans the interval [0,2*Pi). 
% 
%   [Pxx,W] = PERIODOGRAM(X,WINDOW,W) where W is a vector of  
%   normalized frequencies (with 2 or more elements) computes the  
%   periodogram at those frequencies using the Goertzel algorithm. In 
this  
%   case a two sided PSD is returned. The specified frequencies in W 
are  
%   rounded to the nearest DFT bin commensurate with the signal's  
%   resolution.      
% 
%   [Pxx,F] = PERIODOGRAM(X,WINDOW,NFFT,Fs) returns a PSD computed as a 
%   function of physical frequency (Hz).  Fs is the sampling frequency  
%   specified in Hz. If Fs is empty, it defaults to 1 Hz. 
% 
%   F is the vector of frequencies at which the PSD is estimated and 
has 
%   units of Hz.  For real signals, F spans the interval [0,Fs/2] when 
NFFT 
%   is even and [0,Fs/2) when NFFT is odd.  For complex signals, F 
always 
%   spans the interval [0,Fs). 
% 
%   [Pxx,F] = PERIODOGRAM(X,WINDOW,F,Fs) where F is a vector of  
%   frequencies in Hz (with 2 or more elements) computes the 
periodogram at  
%   those frequencies using the Goertzel algorithm. In this case a two 
%   sided PSD is returned. The specified frequencies in F are rounded 
to  
%   the nearest DFT bin commensurate with the signal's resolution.      
% 
%   [...] = PERIODOGRAM(...,'twosided') returns a two-sided PSD of a 
real 
%   signal X. In this case, Pxx will have length NFFT and will be 
computed 
%   over the interval [0,2*Pi) if Fs is not specified and over the 
interval 
%   [0,Fs) if Fs is specified.  Alternatively, the string 'twosided' 
can be 
%   replaced with the string 'onesided' for a real signal X.  This 
would 
%   result in the default behavior.  The string 'twosided' or 
'onesided' 



www.manaraa.com

 

189 
 

%   may be placed in any position in the input argument list after 
WINDOW. 
% 
%   PERIODOGRAM(...) with no output arguments by default plots the PSD 
%   estimate in dB per unit frequency in the current figure window. 
% 
%   EXAMPLE: 
%      Fs = 1000;   t = 0:1/Fs:.3; 
%      x = cos(2*pi*t*200)+randn(size(t));  % A cosine of 200Hz plus 
noise 
%      periodogram(x,[],'twosided',512,Fs); % The default window is 
used 
%       
%   See also PWELCH, PBURG, PCOV, PYULEAR, PMTM, PMUSIC, PMCOV, PEIG, 
%   SPECTRUM, DSPDATA. 
  
%   Author(s): R. Losada  
%   Copyright 1988-2011 The MathWorks, Inc. 
%      
  
error(nargchk(1,6,nargin,'struct')); 
  
% Look for undocumented (unsupported) window compensation flag. 
if nargin>2 & any(strcmpi(varargin{end},{'ms','psd'})), %#ok 
    esttype = varargin{end};  % Can only be specified as last input 
arg. 
    varargin(end) = [];       % remove from input arg list. 
else 
    esttype = 'psd';     % default 
end 
  
N = length(x); % Record the length of the data 
  
% Generate a default window if needed 
winName = 'User Defined'; 
winParam = ''; 
if (nargin == 1) || isempty(win), 
   win = rectwin(N); 
   winName = 'Rectangular'; 
   winParam = N; 
end 
  
[options,msg,msgobj] = periodogram_options(isreal(x),N,varargin{:});  
if ~isempty(msg), error(msgobj); end 
  
Fs    = options.Fs; 
nfft  = options.nfft; 
  
% Compute the PS using periodogram over the whole nyquist range. 
[Sxx,w] = computeperiodogram(x,win,nfft,esttype,Fs); 
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nrow = 1; 
% If frequency vector was specified, return and plot two-sided PSD 
% The computepsd function expects NFFT to be a scalar 
if (length(nfft) > 1),  
    [ncol,nrow] = size(nfft);  
    nfft = max(ncol,nrow); 
    if (length(options.nfft)>1 && strcmpi(options.range,'onesided')) 
        warning(message('signal:periodogram:InconsistentRangeOption')); 
        options.range = 'twosided'; 
    end 
end 
  
% Compute the 1-sided or 2-sided PSD [Power/freq] or mean-square 
[Power]. 
% Also, compute the corresponding freq vector & freq units. 
[Pxx,w,units] = computepsd(Sxx,w,options.range,nfft,Fs,esttype); 
  
if nargout==0, % Plot when no output arguments are specified   
   w = {w}; 
   if strcmpi(units,'Hz'), w = {w{:},'Fs',options.Fs}; end 
   hpsd = dspdata.psd(Pxx,w{:},'SpectrumType',options.range); 
  
   % Create a spectrum object to store in the PSD object's metadata. 
   hspec = spectrum.periodogram({winName,winParam}); 
   hpsd.Metadata.setsourcespectrum(hspec); 
  
   plot(hpsd); 
  
else 
   Px = Pxx; 
   % If the frequency vector was specified as a row vector, return 
outputs  
   % the correct dimensions 
   if nrow > 1,   
       Px = Px.'; w = w.'; Sxx = Sxx.';  
   end 
end 
  
%----------------------------------------------------------------------
-------- 
function [options,msg,msgobj] = 
periodogram_options(isreal_x,N,varargin) 
%PERIODOGRAM_OPTIONS   Parse the optional inputs to the PERIODOGRAM 
function. 
%   PERIODOGRAM_OPTIONS returns a structure, OPTIONS, with following 
fields: 
% 
%   options.nfft         - number of freq. points at which the psd is 
estimated 
%   options.Fs           - sampling freq. if any 
%   options.range        - 'onesided' or 'twosided' psd 
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% Generate defaults  
options.nfft = max(256, 2^nextpow2(N)); 
options.Fs = []; % Work in rad/sample 
  
% Determine if frequency vector specified 
freqVecSpec = false; 
if (~isempty(varargin) && length(varargin{1}) > 1) 
    freqVecSpec = true; 
end     
  
if isreal_x && ~freqVecSpec, 
   options.range = 'onesided'; 
else 
   options.range = 'twosided'; 
end 
  
if any(strcmp(varargin, 'whole')) 
    warning(message('signal:periodogram:invalidRange', 'whole', 
'twosided')); 
elseif any(strcmp(varargin, 'half')) 
    warning(message('signal:periodogram:invalidRange', 'half', 
'onesided')); 
end 
  
[options,msg,msgobj] = psdoptions(isreal_x,options,varargin{:}); 
  
% [EOF] periodogram.m 
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Appendix B 

1. Correlation factors for 2nd and 3rd near collision situations of subjects 22 and 7. 

2. The SNRs for 6 other subjects 1st near collision situations (other than presented 

subjects 22 and 7). These subjects had DSR and NSR for correlation analysis. 

For all of the following figures near collision situation happens on time step 48 and 

time steps axes configure a 4-seconds time window. 
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Figure 62. Correlation factors obtained from subject 7 driving experiment during the first 
scenario and 2nd near collision situation 
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Figure 63. Correlation factors obtained from subject 7 driving experiment during the 
second scenario and 2nd near collision situation 
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Figure 64. Correlation factors obtained from subject 7 driving experiment during the first 
scenario and 3rd near collision situation 
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Figure 65. Correlation factors obtained from subject 7 driving experiment during the 
second scenario and 3rd near collision situation 
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Figure 66. Correlation factors obtained from subject 22 driving experiment during the 
first scenario and 2nd near collision situation 
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Figure 67. Correlation factors obtained from subject 22 driving experiment during the 
second scenario and 2nd near collision situation 
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Figure 68. Correlation factors obtained from subject 22 driving experiment during the 
first scenario and 3rd near collision situation 
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Figure 69. Correlation factors obtained from subject 22 driving experiment during the 
second scenario and 3rd near collision situation 
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Figure 70. The obtained SNR from the first near collision situation of the subject 6 
driving-simulator experiments 
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Figure 71. The obtained SNR from the first near collision situation of the subject 10 
driving-simulator experiments 
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Figure 72. The obtained SNR from the first near collision situation of the subject 13 
driving-simulator experiments 
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Figure 73. The obtained SNR from the first near collision situation of the subject 18 
driving-simulator experiments 



www.manaraa.com

 

205 
 

 

Figure 74. The obtained SNR from the first near collision situation of the subject 27 
driving-simulator experiments 
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Figure 75. The obtained SNR from the first near collision situation of the subject 30 
driving-simulator experiments 
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Appendix C 

Questionnaire 

 

 

Driver Evaluation of the Car Simulator 
Driver No.______________________                 Date:___________________ 

(This information as well as all other information will be kept confidential) 
 

Question 1: Please rate your experience with the car-simulator: 
1  2  3  4  5  6  7  8  9 

Not Realistic at All  Fairly Realistic    Very Realistic 
 
Question 2: Were you able to estimate the distance with the objects in front of you correctly? 

1  2  3  4  5  6  7  8  9 
Too Close            Correct     Too Far 

 
Question 3: How do you rate steering wheel stiffness compared to your vehicle (or what 
you are used to)? 

1  2  3  4  5  6  7  8  9 
Very Loose            Normal     Very Stiff 

 
Question 4: How do you rate the braking system of the car simulator in comparison to 
your vehicle (or what you are used to)? 

1  2  3  4  5  6  7  8  9 
Stopped Too Late  Stopped Normally    Stopped Sooner 

 
Question 5: How do you rate the overall handling of the car in comparison to your vehicle 
(or what you are used to)? 

1  2  3  4  5  6  7  8  9 
Much Harder              Same     Much Easier 

 
 
 
Comments:____________________________________________________________________________________________
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
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Driver Evaluation of the LED’s Stimulator Test 
Driver No.______________________                 Date:___________________ 

(This information as well as all other information will be kept confidential.) 

 
Question 1: Have you ever participated in an experiment in which your brain signals 
recorded with an EEG device? 

Yes  No 
 
Question 2: Please rate from 1 to 9, your level of comfort when you were wearing the EEG-
Cap: 

1  2  3  4  5  6  7  8  9 
Uncomfortable         Somehow Uncomfortable   Comfortable 

 
Question 3: Did you have any preliminary knowledge (or ever have heard about) Brain-
Computer Interface systems (BCIs) before participating in this experiment? 

Yes  No 
If yes: Have you ever participated in an experiment in which a Brain-Computer 
Interface (BCI) system being tested? 
Yes  No 

 
Question 4: Was the flickering LED’s Stimulator box experiment irritating your eyes? 

1  2  3  4  5  6  7  8  9 
Too Much         Somehow     Not at ALL 

 
Question 5: Do you think that you would use any kind of system with the visual stimulator, 
as you experienced, if it was available as an assistive product? 

1  2  3  4  5  6  7  8  9 
Not at ALL         Somehow     Acceptable 

 
 
 
Comments:____________________________________________________________________________________________
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
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Driver Evaluation of the car simulator experiments 
Driver No.______________________                 Date:___________________ 

(This information as well as all other information will be kept confidential.) 

 
Question 1: Please rate from 1 to 9, how the flickering LED’s distracted you during the 
driving scenarios? 

1  2  3  4  5  6  7  8  9 
Very Much         Somehow     Not at all 

 
Question 2: Please rate from 1 to 9, was the short flickering LED’s warning period helpful 
to improve your reaction to the emergency situation? 

1  2  3  4  5  6  7  8  9 
Worsened       Not Helpful     Improved 

 
Question 3: Please rate from 1 to 9, was the longer period of LEDs flickering increased the 
time you normally need to react to the emergency situations, during these driving scenarios? 

1  2  3  4  5  6  7  8  9 
Increased       Didn’t Change    Decreased 

 
Question 4: Please rate from 1 to 9, how wearing the EEG-Cap affected you and your 
driving skill during these tests? 

1  2  3  4  5  6  7  8  9 
Worsen my driving skill       Somehow     didn’t affect me 

 
Question 5: Do you think that such a warning system will help you to avoid/mitigate any 
accident(s)? 

1  2  3  4  5  6  7  8  9 
No (Not Helpful)         Somehow     Yes (Helpful) 

 
Question 6: Do you think that you would use such a system if it was available in your car? 

1  2  3  4  5  6  7  8  9 
No             maybe     Yes 
 

Question 7: Have you used any kind of intelligent driving assistant system such as cruise 
control? Yes/ No 
Please rate the level of your satisfaction with intelligent driving assistant systems that you 
have used before: 

1  2  3  4  5  6  7  8  9 
I didn’t like it             somehow liked it                         I use it whenever I can 

 
 
Comments:____________________________________________________________________________________________
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
________________________________________________________________________________________________________ 
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Driver’s self-evaluation 
 
Have you even taken a safety driving course?  Yes   No 
 
How many accidents have you been involved in within the past five years?   _______________ 
If so, what type of accidents? (Circle one) 

Rear-end   Intersection   Head-on  Other (please 
describe) ___________________________________________________________________________________________ 
 
How many miles do you drive annually?  

Less than 2000mi   2000-7500mi    More than 7500mi 
 
How do you characterize your skill of driving? 

1  2  3  4  5  6  7  8  9 
Not good            Average      Expert 

 
Please describe your own reaction to avoid near collision (emergency) situations of these 
experiments: 
 

1. I was surprise and couldn’t react 

2. Later than my normal reaction time 

3. I reacted just like my normal driving 

4. Better than normally 

 
Please rate the difficulty level of the near collision (emergency) situations in these tests? 

1  2  3  4  5  6  7  8  9 
Impossible to avoid            Difficult      Very Easy 

 
Which one of the following best describes your estimation of distance to the cars on the 
road? 
 

1. They were Located where I estimated them 

2. They were closer than I estimated 

3. They were farther than I estimated 

4. Others (Please describe):________________________________________________________________________ 

 
 
Comments:____________________________________________________________________________________________
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
_________________________________________________________________________________________________________ 
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